Electrical Engineering Department Government College of Engineering, Karad

Curriculum for FY Electrical from Academic Year 2022-23

Institute Vision

To emerge as a technical Institute of national repute driven by excellence in imparting value based education and innovation in research to face the Global needs of profession

Institute Mission

To <u>create</u> professionally competent engineers <u>driven</u> with the sense of responsibility towards <u>nature</u> <u>and society</u>

Department Vision

To produce Electrical Engineers to meet the requirements of Industry with <u>professional, ethical</u> and <u>social</u> responsibility

Department Mission

To impart quality education in Electrical Engineering

To *upgrade* curriculum continuously to meet the industrial requirements

To develop ability to research, innovation and entrepreneurship

To promote <u>awareness</u> about social and ethical responsibility

Program Educational Objectives

DEC 1	Student will have a sound foundation of mathematical, scientific and engineering
PEO 1	<u>fundamentals</u> necessary to <u>formulate</u> , <u>solve</u> and <u>analyze</u> engineering problems and
	to <u>prepare</u> them for <u>graduate studies</u> as well as <u>research</u> and <u>innovation</u>
	Student will have an excellent <u>academic ambience</u> of collaborative learning which
PEO 2	will help them to <u>assimilate</u> difficult theoretical concepts through modeling,
	simulation, well designed laboratory sessions, industrial training etc. by using
	modern tools.
PEC 4	Employability of students will be enhanced by continually upgrading the curricula
PEO 3	to <u>satisfy</u> dynamic <u>industry</u> requirements in tune with the state-of-the-art <u>scientific</u>
	and technological developments and entrepreneurship skills will be inculcated
	Students will demonstrate professional, ethical attitude and ability to relate
PEO 4	engineering issues to broader environmental and social context through life-long
	learning

Program Outcomes (POs)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering
 and IT tools including prediction and modeling to complex engineering activities with an
 understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME (PSO)

1. Design solution for power system problems using appropriate tool and design power apparatus that meet specific needs with appropriate consideration to its social impact

SCHEME OF INSTRUCTION & SYLLABI

Programme: Electrical Engineering

`Scheme of Instructions: Final Year B. Tech. in Electrical Engineering

Semester – VII

Sr.	Course	Course	Course Title	L	T	P	Contact	Course		EX	AM SCHI	EME	
No.	Category	Code					Hrs/Wk	Credits	CT-1	CT-2	TA/CA	ESE	TOTAL
1	OEC	EE2701	Computer Network &	3	-	-	3	3	15	15	10	60	100
			Communication										
2	PEC	EE27*2	Elective – III	3	-	-	3	3	15	15	10	60	100
3	PEC	EE27*3	Elective – IV	3	1	-	4	4	15	15	10	60	100
4	PCC	EE2704	Switchgear and Protection	3	ı	-	3	3	15	15	10	60	100
5	PCC	EE2705	Electrical Drives	4	-	-	4	4	15	15	10	60	100
6	OEC	EE2706	Computer Network &	-	-	2	2	1	-	-	50	_	50
			Communication Lab										
7	PEC	EE27*7	Elective – III Lab	-	ı	2	2	1	Ī	-	25	25	50
8	PEC	EE27*8	Elective – IV Lab	-	ı	2	2	1	ī	-	25	25	50
9	PCC	EE2709	Switchgear and Protection Lab	-	ı	2	2	1	Ī	-	25	25	50
10	PCC	EE2710	Electrical Drives Lab	-	ı	2	2	1	ī	-	25	25	50
11	P/S/IT	EE2711	Case study	-	-	2	2	1	-	-	50		50
12	P/S/IT	EE2712	Industrial Training &	-	1	-	1	1	-	-	50		50
			Technical Presentation										
			Total	16	02	12	30	24	75	75	300	400	850

L- Lecture T-Tutorial P-Practical

CT1- Class Test 1 TA/CA- Teacher Assessment/Continuous Assessment

CT2- Class Test 2 ESE- End Semester Examination (For Laboratory End Semester performance)

Course Category	HSMC (Hum., Soc. Sc, Mgmt.)	BSC (Basic Sc.)	ESC (Engg. Sc.)	PCC (Programme Core courses)	PEC (Programme Elective courses)	OEC (Open Elective courses from other discipline)	MCC (Mandatory Courses)	Project / Seminar / Industrial Training
Credits				08	09	03		04
Cumulative Sum	10	22	27	46	15	15	Yes	07

PROGRESSIVE TOTAL CREDITS :118+24 = 142

SCHEME OF INSTRUCTION & SYLLABI

Programme: Electrical Engineering

Scheme of Instructions: Final Year B. Tech. in Electrical Engineering (ACADEMIC MODE)

Semester – VIII

Sr.	Course	Course	Course Title	L	T	P	Contact	Course		EX	AM SCHE	EME	
No.	Category	Code					Hrs/Wk	Credits	CT-1	CT-2	TA/CA	ESE	TOTAL
1	HSMC	EE2801	Laws for Engineers	3	1	1	3	3	15	15	10	60	100
2	OEC	EE2802	Embedded System	3	ı	ı	3	3	15	15	10	60	100
3	PEC	EE28*3	Elective – V	3	ı	ı	3	3	15	15	10	60	100
4	OEC	EE2804	Embedded System Lab	1	1	2	2	1	-	-	25	50	75
5	PEC	EE28*5	Elective – V Lab	1	1	2	2	1	ı	ı	25	50	75
6	P/S/IT	EE2806	Project			14	14	7	ISA-I	ISA-II	50	150	300
	F/S/11	EE2800	Floject	ı	ı	14	14	/	50	50	50	130	300
			Total	09	00	18	27	18	95	95	130	430	750

L- Lecture T-Tutorial P-Practical

CT1- Class Test 1 TA/CA- Teacher Assessment/Continuous Assessment

CT2- Class Test 2 ESE- End Semester Examination (For Laboratory End Semester performance)

Intermediate assessment of the project work (ISA-I & ISA-II) shall be done 2 times by a departmental committee after every 4weeks from start of project work. The contact Hrs shown are for students to work in a group of minimum 4 students per group.

Course Category	HSMC (Hum., Soc. Sc, Mgmt.)	BSC (Basic Sc.)	ESC (Engg. Sc.)	PCC (Programme Core courses)	PEC (Programme Elective courses)	OEC (Open Elective courses from other discipline)	MCC (Mandatory Courses)	Project / Seminar / Industrial Training
Credits	03				04	04		14
Cumulative Sum	13	22	27	46	19	19		14

PROGRESSIVE TOTAL CREDITS: 142+18= 160

SCHEME OF INSTRUCTION & SYLLABI

Programme: Electrical Engineering

Scheme of Instructions: Final Year B. Tech. in Electrical Engineering (INDUSTRY MODE)

Semester - VIII

Sr.	Course	Course	Course Title	L	T	P	Contact	Course		EXA	AM SCHI	EME	
No.	Category	Code					Hrs/Wk	Credits	CT-1	CT-2	TA/CA	ESE	TOTAL
1	OEC	EE2807	(MOOC – 1)/ Online course offered by department-1	-	-	1	-	3	-	-	-	-	100
2	PEC	EE2808	(MOOC – 2)/ Online course offered by department-2	-	-	-	-	3	-	-	-	-	100
3	P/S/IT	EE2809	Industrial Project	-	-	-	-	12	ISA-I	ISA-II	100	300	550
									75	75			
4													
			Total	00	00	00	00	18	75	75	100	300	750

Intermediate assessment of the project work (ISA-I & ISA-II)shall be done 2 times by a Guide after every 4weeks from start of project work

Course Category	HSMC (Hum., Soc. Sc, Mgmt.)	BSC (Basic Sc.)	ESC (Engg. Sc.)	PCC (Programme Core courses)	MOOCS	OEC (Open Elective courses from other discipline)	MCC (Mandatory Courses)	Project / Seminar / Industrial Training
Credits	00				06			12
Cumulative Sum	10	22	27	46	21	15	Yes	19

PROGRESSIVE TOTAL CREDITS: 142+18= 160

For MOOC 1 and 2 department will dclare list of MOOC 1/2 from which student have to select any one.

^{*} The faculty coordinator shall be appointed for OEC EE2807 & PEC EE2808 for continuous monitoring of students' progress for the opted online MOOC course.

^{**} The Industrial Project guide from department will be allotted to every student to continuous monitor the progress of Industrial Project work.

List of PROGRAM ELECTIVE courses:

Verticals	Adva	anced Power System	m		nced Electrica Modelling	1		rial Control & omization	Energy & Utilization		
Elective – III	EE2712	Restructured Power E		EE2722	Special Electrical		EE2732	Industrial	EE2742	Smart Grid	
		System			Machines		Automation				
								and Control			
Elective – IV	EE2713	Generation pla	anning	EE2723	Electrical		EE2733	Process	EE2743	Power System	
		and load forecasti	ing		Equipments	and		Control		Operation and	
					Machines			Engineering		Control	
Elective – V	EE2813	FACTS		EE2823	Electric	and	EE2833	Advanced	EE2843	Power Quality	
					hybrid vehicle	es		Control		and harmonics	
								System			

COMMON INSTRUCTIONS

Departments shall suggest & execute

- 1. <u>Bridge courses for the Students Admitting to Direct Second year via Lateral Entry scheme in the III semester</u>. (Diploma students)
- 2. <u>Bridge courses</u> for the students who may be <u>Admitted in Autonomous mode from University mode</u>.
- 3. <u>MOOCs</u> for students adapting <u>Industry Mode</u> to fulfil the credit requirements. Copy of certificates / grade card shall be submitted to Controller of Examinations, GCE Karad through Program Coordinator prior to ESE.

			C		-!! IZ1			
		17		ment College of Enem. – VII) B. Tech.		owing		
		<u> </u>		Computer Network		Ŭ		
			EE2701.	computer Network	& Communication	ш		
Teachin	g Schen	ne	<u> </u>			Examination Sch	eme	
Lectures		03Hrs/week				CT – 1	15	
Tutorials		00Hrs/week				CT - 2	15	
Total Cr		03				TA	10	
Total Ci	Cares	03				ESE	60	
						Duration of ESE	02 Hrs	30 Min
Course	Outcom	es (CO)	1		l	Duration of ESE	02 1115	20 1/1111
Students								
			nges in the ar	chitecture of a comp	outer network			
				he OSI model and				
	•		•	anizational structure		appropriate networ	king arch	itecture
	technolo							
4. Eval	luate the	different types	of network d	evices and their fun	ctions within a netv	vork		
5 Crea	ate the s	kills of sub nett	ing and routir	g mechanisms				
				Course Cont	ents			Hours
Unit 1		luction to Data						
				ds, Categories of	Networks, OSI &	TCP/IP Protocol	suites.	(6)
	_	ogy, Different n						
Unit 2		•		cess Technique:				
				trol, Elementary da	ta link protocols (ARQs: Stop and V	Vait, go	(6)
		I, Sliding windo			. XX7' 1 T A X Y	CCMA (CD CC)	/ A / C A	
			_	red LANs: Etherne	t, Wireless LANs,	CSMA /CD, CSN	/IA/CA,	
TI:4 2		·	andom Access	, Channelization.				(4)
Unit 3		rk Layer:	ADD DADD	Error reporting pro	togal ICMD_ICMD	Forwarding and II	nicost	(4)
		iressing, ir v4, ig protocols.	AKF, KAKF,	Error reporting pro	locol ICMF .IGMF	. Forwarding and O	meast	
Unit 4		port Layer:						
Omt 4			Addressing	Establishing & rel	easing a connection	on Transport prote	col for	(5)
		et TCP & UDP	radicssing,	Establishing & Tel	cusing a connection	on Transport prote	201 101	(3)
Unit 5		cation Layer:						
			Protocols DI	ICP, DNS, TELN	ET, FTP, SMTP	P, HTTP, WWW.	VoIP.	(5)
		•		oals of Security Ba	· ·		,	\-\
Unit 6	Basics	of network se	curity and no	twork administrat	ion:			
				Cryptography, Ba		tacks, Security alg	gorithm,	(4)
	Interne	et security IPSe	c.					
Text Bo								
				tions And Network		ta McGraw Hill 20	17	
			omputer Netw	orks, 8th Edition, P	rentice Hall 2003			ı
Referen								
				Communication, 8th			Delhi, 20	07.
	_	Comer, Compu	ter Networks	And Internet, Pears	on Education Asia,	4thEdition2008		ı
Useful I								
1. http)://www	.rfc-editor.org/1	rfcsearch.htm	<u> </u>				
		.cisco.cn.com						

Government College of Engineering, Karad

Final Year (Sem. - VII) B. Tech. Electrical Engineering

EE2701: Computer Network & Communication

Course Outcomes (CO)

Students will be able to

- 1. Apply the issues and challenges in the architecture of a computer network
- 2. Analyze the function(s) of the layers of the OSI model and TCP/IP Model
- 3. Analyze the requirements for a given organizational structure to select the most appropriate networking architecture and technologies
- **4.** Evaluate the different types of network devices and their functions within a network
- 5 Create the skills of sub netting and routing mechanisms

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	3	2	1	1	-	1	1	1	-	-	2	•
CO 2	3	2	3	1	2	3	1	ı	ı	-	-	2	-
CO 3	2	3	2	2	1	2	1	-	-	-	-	2	3
CO 4	2	2	2	1	2	1	ı	-	-	-	-	ı	3
CO5	2	3	2	2	2	-	-	-	-	-	1	1	-

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5			
Understand	5	5		
Apply	5	5	3	20
Analyse		5	3	20
Evaluate			4	20
Create				
TOTAL	15	15	10	60

ELECTIVE III

			ELECTIV	<u>E III</u>			
			Government College of I	Engineering, Ka	ırad		
		Fina	al Year (Sem. – VII) B. Tec	ch. Electrical En	ngineering		
			lective III - EE 2712: Restr				
Tea	chin	g Scheme	<u> </u>		Examination	Scheme	1 1
Lect	tures	03Hrs/week			CT – 1	15	
Tuto	orials	00Hrs/week			CT – 2	15	
Tota	ıl Cre	edits 03			TA	10	
					ESE	60	
					Duration of E	SE 02 Hrs	30 Min
		Outcomes (CO)					
Stuc	lents	will be able to					
1.	Iden	tify the need of regulat	ion and deregulation.				
2.	Defi	ne and describe the Te	chnical and Non-technical iss	ues in Deregulate	ed Power Industry	<i>7</i> .	
3.	Iden	tify and give examples	of existing electricity market	ts.			
4.	Clas	sify different market m	nechanisms and summarize th	e role of various	entities in the man	rket.	
			Course Co	ntents			Hours
Uni	it 1		ricity Supply Industry				(6)
		Fundamentals of restru					
			lation and current situation aro	und the world, Be	nefits from compe	titive	
		electricity market					
Uni	it 2		on in competitive environme				(7)
			al planning activities of ISO, o	perational plannir	ng activities of GE	NCO	(0)
Uni	it 3	Transmission Open a					(8)
			smission open access, cost conechanism in various countr				
		deregulation	nechanism in various countr	ies, security and	congestion man	agement in	
Uni	t 1	Ancillary services m	anagement:				(7)
CIII			some ancillary services. Anci	llary services mar	nagement in variou	is countries	(1)
		reactive power as an ar		inary services man	ingement in variou	is countries,	
Uni	it 5	Power sector restruct					(6)
		Electricity Act 2003, N					(-)
Uni	it 6	•	n Indian power sector:				(6)
		CEA, PFC, Ministry o	f Power, India Energy Exchang	ge (IEX)			
Tex	t Boo	oks					
1.	Kar	nkar Bhattacharya, Jaaj	E. Daadler, Math H.J. Boole	en, "Operation of	restructured pow	er systems",I	Cluwer
	Aca	ndemic Publishers					
Ref	eren	ce Books					
1.	Mo	hammad Shahidehpour	, MuwaffaqAlomoush, "Rest	ructured electrica	al power systems:	operation,	
		ling and volatility", Ma					
2.	Lor	rinPhilipson, H. Lee W	Villis, "Understanding electric	utilities and de-r	egulation", Marc	el Dekker	<u> </u>
		.,1998.					
Use	ful L	inks					
1.	http	s://nptel.ac.in/courses/	108/101/108101005/				
			/watch?v=aM9CrGHFlg4				

Final Year (Sem. – VII) B. Tech. Electrical Engineering

Elective III - EE 2712: Restructured Power System

Mapping of COs and POs

Course Outcomes (CO) Students will be able to 1. Identify the need of regulation and deregulation. 2. Define and describe the Technical and Non-technical issues in Deregulated Power Industry. 3. Identify and give examples of existing electricity markets.

4. Classify different market mechanisms and summarize the role of various entities in the market.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2	2				2	3
CO 2	3	2	3	1	2	3	1	1				2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	25
Evaluate	5	5	4	15
Create				
TOTAL	15	15	10	60

			Government Co	ollege of Enginee	ering, Kara	 nd		
		Fin	al Year (Sem. – V					
			EE 2722 : Elective					
			E 2722 · Elective	iii Speciai Lice	our rear iviac			
Teachin	g Sche	me				Examination Sch	eme	
Lectures		03Hrs/week				CT – 1	15	
Tutorials						CT – 2	15	
Total Cr		03				TA	10	
						ESE	60	
						Duration of ESE	02 Hrs	30 Min
Course	Outcor	nes (CO)					<u>.</u>	
Students								
1.	To un	derstand concep	ot of special purpose	machines and their	industrial ap	oplications		
2.			d foundation in Elect				nceptual	
			ytical methods in spe		•	•		
3.			are of protective system			ing.		
			(Course Contents				Hours
Unit 1	Const	tructional featur	es of Synchronous	Reluctance Motor-	- Types, Ax	ial & Radial flux	motors,	(6)
	Opera	ating principles,	Variable Reluctance	e Motors, Voltage	& Torque	equations, Phasor of	liagram,	
		rmance characte						
Unit 2			ires of Stepper Mot		•			(6)
			le & multi stack c	_	• •			
			e circuits, Micropro	cessor control of	stepper mo	tors, closed loop o	control,	
		cept of lead angle						
Unit 3			es of Switched Reluc					(6)
			duction, steady state				er	
			ntrollers, Methods of	rotor position sens	ing, Sensor	less operation,		
TI *4 4			ed loop control.	D	44	14		(0)
Unit 4			orushless dc motors,					(8)
			neance coefficient, puations, Commutation					
		acteristics &con		on, power convert	of circuits 6	e their controllers,	MOIOI	
Unit 5			nchronous motors(F	PMSM) principle of	f operation	FMF & Torque eq	mations	(6)
Omt 5			chronous reactance,		_		-	(0)
			eristics, power contro				magram,	
Unit 6	_		ns: Synchronous Re			<u> </u>	luctance	(8)
CINCO			gnet brushless dc mo				idetunee	(0)
Text Bo		,	6					
		ratnam, 'Specia	l Electrical Machines	s', Universities Pres	ss (India) Pri	ivate Limited, 2008		
			ermanent Magnet an			,		
		Press,Oxford, 1	_	2 2.23 00	- ,			
			rs and Their Micropro	ocessor Controls', (Clarendon Pr	ress London, 1984.		
Referen		11 0	1	,				
			luctance Motor Drive	es – Modeling, Sim	ulation, Ana	alysis, Design andA	pplication	ı', CRC
		v York, 2001.						
2. P.P	. Aearr	ley, 'Stepping N	Motors – A Guide to	Motor Theory and I	Practice', Pe	ter PerengrinusLone	don, 1982	2.
3. T. l	Kenjo a	nd S. Nagamori	, 'Permanent Magnet	and Brushless DC	Motors', Cl	arendon Press,		
	ndon, 1							
			electrical machines',	•				
		t Magnet Synchr	onous & Brushless I	OC Motordrives,R.I	Krishnan, CI	RC Press.		
Useful I								
1. <u>ww</u>	w.ocw	<u>.mit.edu</u>						
2. <u>ww</u>	<u>/w.npte</u>	<u>el.iitm.ac.in</u> (Vide	eo courses on Specia	l Electrical Machine	es.)			
•								

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE2722: Elective III - Special Electrical Machines

Mapping of COs and POs

Cours	e Outcomes (CO)
Studen	nts will be able to
1.	To understand concept of special purpose machines and their industrial applications
2.	To set a firm and solid foundation in Electrical machines with strong analytical skills and conceptual
	understanding of analytical methods in special electrical Machines.
3.	To make students aware of protective system with industry oriented learning.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3

Assessment Pattern

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

				Govern	nent College	e of Enginee	ring Kara	nd.		
			Fin			Tech. Elect				
						istrial Autor				
				752 . Electi	Ve III - IIIut	istrai Autor	nation and	Control		
Таз	chin	g Sche	me					Examination Sch	omo	
	tures	g Sche	03Hrs/week					CT – 1	15	
	orials		00Hrs/week					CT-1	15	
	al Cro		03					TA	10	
1011	ai Civ	cuits	03					ESE	60	
								Duration of ESE	02 Hrs	30 Min
Con	ırse (Outcor	nes (CO)	1				Duration of LoL	02 1115	20 11111
			able to							
			ferent componer	nts of an auto	mation system	m.				
			e given I/O devi							
			C ladder diagrar			iloudio.				
			uitable motor dr			cation.				
						se Contents				Hours
Uni	it 1	Intro	duction to Indu	strial Auton						(8)
							omation sys	tems-fixed, prograi	mmable,	
								tors and sensors and		
Uni	it 2	PLC	Fundamentals:				-			(8)
		Build	ing blocks of P	LC: CPU, M	lemory organ	ization, Input-	output mod	lules, Special I/O n	nodules,	
		power	supply. Fixed a	and Modular	PLC and their	r types, Redur	ndancy in PI	LC module.		
Uni	it 3		Programming:							(4)
			O addressing.							
								on delay, off delay	<i>'</i> ,	
			ive, Counter ins					ns, comparison		
			ctions, Data han							
						nagram, Instru	action list, s	tructured text, seque	ential	
Uni	24.4		on chart, ladder	programmin	g.					(7)
Uni	և 4		Applications:	avamplas usi	ing ladder lea	ria: Ianguaga h	acad on rale	ny, timer counter, lo	origa1	(7)
			arison, arithmeti				aseu on reia	iy, timer counter, to	igicai,	
							Control ele	vator control, tank l	evel	
			ol, conveyer syst	•		•		vator control, tank i	IC V C1	
Uni	it 5		rical Drives and			, - 22232 231110	<u>-</u>			(6)
			ical drives: Typ			cs. four quadra	ant operation	n		
			nd AC drive Con			•	•			
			s: working princ				•			
			cations: speed c			• •	**			
Uni	it 6	Super	visory Control	and Data A	cquisition Sy	stem:				(7)
		Introd	uction to SCAD	OA, typical So	CADA archite	ecture/block d	iagram, ben	efits of SCADA.		
			us editors of SC							
								ect linking and em		
							creen for sin	mple objects (defin	ing tags	
			ems) with PLC							
TT.	4 T		cations of SCAI	JA: water dis	stribution, pip	eline control.				
	t Bo		1.1. 1	. 4 11 11 T 11	17 D 171	11.1	NTD_1	1.: 2017 IGDN 07	10017400	2201
1.								hi, 2017, ISBN : 97		
2.				roners" Petru	izeii.F.D, Tat	a — McGraw	Hill India, I	New Delhi, Fourth e	eaition,20	10,
	ISB	ın: 9/8	0071067386							
	"		1. 1	11	44.1			M - 4111	1	
	Pr	ogramn	nable logic cont	rollers and in	idustrial autor	nation: an intr	oduction",	MadhuchhandaMitra	a and	

	SamarjitSen Gupta, second edition ,Penrarn International Publication 9788187972174	on, New De	elhi, 2015, Fifth reprint, ISB	N:
Ref	Perence Books			
1.	"Introduction to Programmable logic controllers", Dunning.G. Tho 13.	mson/Delm	nar learning, New Delhi,200	5, ISBN:
2.	"Supervisory Control and Data Acquisition", Boyar.S.A, ISA Publi 1936007097	ication New	Dxellii (4'l' edition) ISBN:	975-
3.	"Industrial automation and process control", Stenerson, Jon, PHIlear	ning,New D	Delhi ISBN:9780130618900	
4.	"Practical SCADA for industry", Bailey, David; Wright, Edwin, Ne edition, 2003, ISBN: 0750658053	ewnes (an ir	mprint ofElsevier)internation	na1
5	"Programmable Controllers Theory and Implementation", Luis A. Edition: first.	Bryan, Indu	strial Text Co. publication,	
Use	eful Links			
1.	https://nptel.ac.in/courses/108/105/108105062/			
2.	https://nptel.ac.in/courses/108/105/108105063/			

Final Year (Sem. –VII) B. Tech. Electrical Engineering

EE2732: Elective III - Industrial Automation and Control

Mapping of COs and POs

11166	pping of costand tos
Co	urse Outcomes (CO)
Stu	dents will be able to
1.	Identify different components of an automation system.
2.	Interface the given I/O device with appropriate PLC module.
3.	Prepare PLC ladder diagram for given application.
4.	Select the suitable motor drive for the specified application.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

			Governme	ent College of 1	Engineering, Kar	ad		
		Fin	al Year (Sem	. – VII) B. Ted	ch. Electrical Eng	ineering		
				EE 2742: Sm				
Teachin	g Sche	me				Examination Sch	eme	
Lectures		03Hrs/week				CT – 1	15	
Tutorials		00Hrs/week				CT – 2	15	
Total Cr		03				TA	10	
						ESE	60	
						Duration of ESE	02 Hrs 3	0 Min
Course	Outcor	nes (CO)						
Students								
			etween smart gi	rid & convention	al grid.			
				al and commercia	<u> </u>			
						nd wide area measure	ements.	
				communication	<u> </u>	10 11100 0100 111000011		
10 pro		art grid bolddon	s using modern	Course Co				Hours
Unit 1	Intro	duction to Sma	rt Grid	Course co				(6)
	•			d, Evolution of	Flectric Grid			(0)
				*	d of Smart Grid.			
		-		Healing Grid.	of Smart Offic.			
	•	1		0	-::- C	1		
TT 14 0	•			iternational poi	cies in Smart Gric	1.		(0)
Unit 2		t Metering and		. D1 Ti D.:	C			(8)
	•				eing, Smart Applian	ices.		
	•		eter Reading (A	· ·				
	•		gement System					
	•		id Electric Vehi rid, Smart Senso					
TI24 2	**************************************							(6)
Unit 3		Area Measure	ment Systems: nformation Sys					(6)
	•				application for mon	itoring & protection,	Smart	
				, Pumped Hydro.	* *	ntoring & protection,	Siliart	
			Air Energy Stor					
		-		-	Phase Measuremen	t I Init (PMII)		
Unit 4	Smo	rt Substation	reasurement by	ystem (**/ fivis),	Thase Weasuremen	t Ollit (1 WIO).		(8)
CIIIt 4	• Siliai		ding Automati	on				(0)
		Smart Substa		on,				
	•	Substation A	· ·					
	•	Feeder Auton	•					
Unit 5	•	Micro Grid:	nation.					(8)
Omt 3			icro-grid need	& applications	of micro-orid			(0)
				ues of interconn				
			control of micr		cetton.			
	•			s, thin film solar	cells.			
	•			cors, fuel-cells, m				
	•	_	-		ole energy sources.			
Unit 6	•		munication Tec		6,			
•					ome Area Network	(HAN).		
					Area Network (WA			
		-			sed communication.			
			-			Security for Smart G	rid.	
				(BPL). IP based		•		
Text Bo	oks			•				
		nayake, Nick Je	nkins, Kithsiril	Liyanage, "Smar	t Grid: Technology	and Applications", V	Vilev 2012	

2.	Ali Keyhani, "Design of smart power grid renewable energy system	ns", Wiley l	IEEE,2011	
Ref	erence Books			
1.	Clark W. Gellings, "The Smart Grid: Enabling Energy Efficiency a	and Demand	Response", CRC Press, 200	9.
2.	Stuart Borlase, "Smart Grid:Infrastructure, Technology and solution	ons "CRC Pr	ess.	
3.	A.G.Phadke, "Synchronized Phasor Measurement and their Applic	ations", Spr	ringer.	
Use	ful Links			
1.	https://nptel.ac.in/courses/108/107/108107113/			
2.	https://nptel.ac.in/courses/108/107/108107143/			

Final Year (Sem. - VII) B. Tech. Electrical Engineering

EE 2742: Smart Grid

Mapping of COs and POs

Course Outcomes (CO) Students will be able to 1. appreciate the difference between smart grid & conventional grid. 2. apply smart metering concepts to industrial and commercial installations. 3. formulate solutions in the areas of smart substations, distributed generation, and wide area measurements. 4. provide smart grid solutions using modern communication technologies.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	2	1	1	1	2	2					2	3
CO 2	3	2	2	1	2	3	1					1	3
CO 3	3	2	3	2	3	1	2					2	3
COA	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

ELECTIVE IV

				College of Enginee				
		Fin	al Year (Sem. – V	VII) B. Tech. Elect	trical Engir	neering		
		Elective	IV - EE 2713 : Ge	eneration Plannin	g and Load	Forecasting		
Teachir	ng Sche					Examination Sch	eme	
Lecture		03Hrs/week				CT – 1	15	
Tutorial		01Hr./week				CT – 2	15	
Total C	edits	04				TA	10	
						ESE	60	
	_					Duration of ESE	02 Hrs	30 Min
		nes (CO)						
		e able to	1 1 . 1 1	.1 1 11		. 44 .4		
				nce the supply and lo	ad demand a	t all the times.		
			ods of load forecast		1 .			
				em cost and reliability	y analysis.			
4. dete	Timne e	economic operat	ion of Power System					II
Tinit 1	Como	mation Essail fo		Course Contents		ama I and Cumun	Tand	Hour
Unit 1				nd Nuclear power ge				(6)
		on curve. Chara droelectric unit.	ctensues of Steam t	units, Variation in ste	eam unit chai	racteristics, Charac	teristics	
Unit 2			n allocation: Long	g range and short ra	nga Uvdra a	ranaration schoduli	ng The	(8)
Omt 2	_			g range and short ra nal scheduling of ge			_	(6)
		luling problems	•	iai scheduling of ge	incration. II	ydrociccure piant	moucis,	
Unit 3				ch of thermal unit, I	Economics d	ispatch problem '	Thermal	(8
Cinto				Lambda iteration me				(0
		tch, Newtons me						
Unit 4				em: Distribution of	f load betw	een unit within	a plant,	(7)
				eration, Distribution l			. ,	
Unit 5				ads -Load forecasting			ng peak	(6)
	dema	nd forecasting	Weather sensitive a	and Non-weather se	ensitive forec	easting - Total for	ecasts -	
	Annu	al and Monthly	peak demand foreca	ast.				
Unit 6				ralized control of sy		ions. Requirement	s of the	(5)
	centra	al load dispatch	centre, Energy mana	agement & conservat	tion.			
Text Bo	oks							
				J. Wood and B.F. Wo		•		
			connected System -	Kirchmayers, L.K.,J	ohn Wiley ar	nd Sons, New York	ζ.	ı
Referen								
				Network Utilities (W		Lectures): by Dav	id M. Nev	wbery
				Abhijit Chakrabharati	i, PHI			
3. Po	wer Sys	tem Planning -	R.L. Sullivan, McGı	raw Hill.				

Government College of Engineering, Karad

Final Year (Sem. – VII) B. Tech. Electrical Engineering

Elective IV - EE 2713: Generation Planning and Load Forecasting

Mapping of COs and POs

Course Outcomes (CO) Students will be able to

- 1. Determine the power or energy needed to balance the supply and load demand at all the times.
- **2.** Examine the different methods of load forecasting.
- 3. Illustrate the different ways of generation system cost and reliability analysis.
- **4.** Find need of load dispatch centres and deregulation of electric utilities

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	3	2	1	1	2	2					2	3
CO 2	1	2	3	1	1	3	1					1	3
CO 3	3	1	1	2	3	2	2					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	4	20
Evaluate	5	5	3	20
Create				
TOTAL	15	15	10	60

					nt College of Engine				
				•	-VII) B. Tech. Elec				
			Electi	ve IV- EE274.	3 : Power System O _l	peration an	d Control		
Tea	achin	g Schei					Examination Sch	eme	
	ctures		03Hrs/week				CT – 1	15	
Tut	orials	3	01Hrs/week				CT – 2	15	
Tot	al Cr	edits	04				TA	10	
							ESE	60	
							Duration of ESE	02 Hrs	30 Min
Cor	urse (Outcon	nes (CO)						
Stu	dents	will be	able to						
1.					ation and control.				
2.	Eval	luate th	e real power-fre	quency interacti	on and design of power	-frequency c	ontroller.		
3.	Ana	lyse th	e reactive power	-voltage interac	tion and the control act	ions to be im	plemented for main	taining tl	he
				ing system load.					
4.	Elab	orate th	ne economic ope	eration of power	system.				
5.	Ana	lyse the	SCADA syster	n and its applica	tion for real time opera	tion and con	trol of power system	ns	
					Course Contents				Hours
Un	it 1		r System Stabil						(6)
					and transient stability				
		_	•		y step solution of swing	g curve, mul	ti-machine stability,	factors	
			ing transient sta						
Un	it 2				eration and Control				(8)
				_	al and Regional load di		-	_	
		-		2 -	nd frequency regulation	•			
					d variation, load curves				
					verning mechanisms ar	nd modelling	g, speed load charac	teristics	
				erators in parall	el.				
Un	it 3		Power- Freque						(6)
					ingle area system-station				
					ea system, tie line mod				
			•	-	analysis, tie line with	frequency bi	ias control, state va	riability	
					ch control with LFC.				
Un	it 4		ive Power – Vo			_			(6)
					e power, basics of read				
		_			ation system, block dia			•	
					ensation, voltage drop i				
					rmer, SVC (TCR + TSC	2) and STAT	COM for voltage co	ontrol.	(6)
Un	it 5			of Power Syste			6.1 1.1		(6)
					em, input and output cl			,	
					tion of thermal units wi				
					cients), base point and				
					onstraints on UC proble			3	
	•				erm and long term hydro	othermal pro	blems.		(6)
Un	it 6			of Power Syst					(6)
					er systems-concept of				
					acquisition and cont				
					estimation problem, n		s and errors -weight	ed least	
		square	e estimation – va	arious operating	states – state transition	diagram.			
		<u> </u>				1	T		
	xt Bo								
1.		_		rgy Systems the	ory – An introduction,	McGraw Hil	I Education Pvt. Ltd	l., New D	Delhi,
			it, 2010.	F1 XX 11 1	<i>p</i>	.,		. ~	<u> </u>
2.	Alle	en. J. W	ood and Bruce	F. Wollen berg,	Power Generation, Ope	eration and C	control, John Wiley	and Sons	s, Inc.,

	2016.			
3.	AbhijitChakrabarti and SunitaHalder, Power System Analysis Ope Delhi, Third Edition, 2010.	ration and C	Control, PHI learning Pvt. Ltd	d., New
Ref	erence Books			
1.	Kothari D.P. and Nagrath I.J., Power System Engineering, Tata Mo	Graw-Hill	Education, Second Edition, 2	2008.
2.	HadiSaadat, Power System Analysis, McGraw Hill Education Pvt.	Ltd., New I	Delhi, 21st reprint, 2010.	
3.	Kundur P., Power System Stability and Control, McGraw Hill Edu	cation Pvt. 1	Ltd., New Delhi, 10th reprint	t, 2010.
Use	ful Links			
1.	https://nptel.ac.in/courses/108/101/108101040/			
2.	https://nptel.ac.in/courses/108/104/108104052/			•

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering Elective IV- EE2743: Power System Operation and Control

Mapping of COs and POs

111	pping of coordination
Co	ourse Outcomes (CO)
Stı	idents will be able to
1.	Identify significance of power system operation and control.
2.	Evaluate the real power-frequency interaction and design of power-frequency controller.
3.	Analyse the reactive power-voltage interaction and the control actions to be implemented for maintaining the
	voltage profile against varying system load.
4.	Elaborate the economic operation of power system.
5.	Analyse the SCADA system and its application for real time operation and control of power systems

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	3	2	2	2	2	1					2	3
CO 2	3	2	3	2	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	2	2	1	1					2	3
CO 5	2	2	2	2	2	1	2					2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

2. Select the different 3. Identify, formulate 4. Understand various Unit 1 Fundame of protection saturation voltage, a circuit bree oil, SF6 C Unit 2 Fault ana Review of PSM and introduction estimation numerical Unit 3 Basics of Numerica estimation estimation numerical Unit 4 Transmis Introduction properties realization power switch properties realization power switch protection protection protection protection understand protection protection protection protection protection protection understand protection protection protection protection understand protection protection protection understand protection protection protection protection understand protection protection protection understand protectio	Final Year (Sem.– VII) B. T EE2704: Switchges		ering	
Course Outcomes (C) Students will be able to the different of protection saturation voltage, a circuit breading of protection estimation introduction to the protection protection protection protection protection protection protection protection under the protection protection protection protection protection protection protection protection under the protection protection protection protection protection protection under the protection protection protection protection protection protection impedance impedance the protection protection protection protection impedance the protection protection protection protection protection protection protection impedance the protection protec	EE2704: Switchge	un and Ductootion		
Course Outcomes (C) Students will be able to the different of protection saturation voltage, a circuit breading of protection estimation introduction to the protection protection protection protection protection protection protection protection under the protection protection protection protection protection protection protection protection impedance impedance in the protection protection in the protection protection protection protection impedance impedance in the protection protection impedance in the protection protection protection protection impedance impedance in the protection protection protection protection impedance impedance in the protection protection protection impedance impedance in the protection protection protection protection impedance impedance in the protection protection protection protection protection protection impedance impedance in the protection protecti		ar and Protection		
Course Outcomes (Control of Students will be able to the different of saturation woltage, and circuit breading of protection saturation woltage, and circuit breading of protect				
Course Outcomes (Course		Examination Schem	ie	
Course Outcomes (Course Outcomes (Course Outcomes (Course Outcomes (Course Outcomes (Course Outcomes (Course Outcomes will be able to the course of the cour	03Hrs/week	CT – 1	15	
Course Outcomes (Contents will be able to the different of the different o	00Hrs/week	CT – 2	15	
I. Understand the re. Select the different. Identify, formulate. Unit 1 Fundame of protection saturation voltage, a circuit bree oil, SF6 C. Unit 2 Fault ana Review of PSM and introducti. Unit 3 Basics of Numerical estimation numerical. Unit 4 Transmis Introducti properties realization power swith power swith protection impedance.	03	TA	10	
Unit 1 Fundame of protection saturation voltage, a circuit bre oil, SF6 C Unit 2 Fault ana Review o PSM and introducti Unit 3 Basics of Numerica estimation numerical Unit 4 Transmis Introducti properties realization power swi Unit 5 Protection		ESE	60	
I. Understand the re. Select the different. Identify, formulate. Unit 1 Fundame of protection saturation voltage, a circuit bree oil, SF6 C. Unit 2 Fault ana Review of PSM and introducti. Unit 3 Basics of Numerical estimation numerical. Unit 4 Transmis Introducti properties realization power swith power swith protection impedance.		Duration of ESE	02 Hrs 30 Min	
1. Understand the reconstruction 2. Select the different of the different	,			
2. Select the different 3. Identify, formulate 4. Understand various Unit 1 Fundame of protection saturation voltage, a circuit bre oil, SF6 C Unit 2 Fault ana Review o PSM and introduction Unit 3 Basics of Numerical estimation estimation numerical Unit 4 Transmis Introduction properties realization power switt protection Percentag relay with protection				
Unit 1 Fundame of protection saturation voltage, a circuit bre oil, SF6 C Unit 2 Fault ana Review o PSM and introducti Unit 3 Basics of Numerica estimation numerical Unit 4 Transmis Introducti properties realization power swit Unit 5 Protection Percentag relay with protection	laying principles, working of circuit break			
Unit 1 Fundame of protection saturation voltage, a circuit bre oil, SF6 C Unit 2 Fault ana Review o PSM and introducti Unit 3 Basics of Numerica estimation estimation numerical Unit 4 Transmis Introducti properties realization power swi Unit 5 Protection Percentag relay with protection	nt components of protection system such as			
Unit 1 Fundame of protection saturation voltage, a circuit bre oil, SF6 C Unit 2 Fault ana Review o PSM and introducti Unit 3 Basics of Numerica estimation estimation numerical Unit 4 Transmis Introducti properties realization power switt protection Percentag relay with protection protection protection protection protection Unit 6 Bus bar p Bus bar impedance	e and solve problems in protection of trans			tors etc.
of protection saturation voltage, a circuit bree oil, SF6 College oil, SF6	as protections utilised in power system to i	•	me.	
of protection saturation voltage, a circuit bree oil, SF6 College oil, SF6	Course Co			Hours
unit 4 Unit 4 Transmis Introducti properties realization power swit Unit 5 Protection	entals of power system protection, Instru			(8)
Unit 4 Unit 5 Protection protection protection Unit 6 Bus bar properties are alignment of the control of the	ion, protection principles, protection parac			
voltage, a circuit bree oil, SF6 Coll. Unit 2 Fault ana Review of PSM and introduction and introduction estimation numerical. Unit 4 Transmis Introduction properties realization power switch protection protection protection protection. Unit 6 Bus bar properties and protection protection.	n, desirable attributes of protection. Introdu			
Unit 2 Fault and Review of PSM and introduction Introduct	and dc offset current, V.T. equivalent circ rc interruption, resistance switching, interru			
Unit 2 Fault ana Review o PSM and introducti Unit 3 Basics of Numerical estimation estimation numerical Unit 4 Transmis Introducti properties realization power swi Unit 5 Protection Percentag relay with protection	eaker ratings, classification of C.B.s - air b			
Unit 2 Review o PSM and introducti Unit 3 Basics of Numerical estimation estimation numerical Unit 4 Transmis Introducti properties realization power swit Protection Percentag relay with protection	C.B. L.T. switchgear: - MCB, MCCB, HRC			
Review o PSM and introducti Unit 3 Basics of Numerica estimation estimation numerical Unit 4 Transmis Introducti properties realization power switt Percentag relay with protection protection protection protection Unit 6 Bus bar p Bus bar impedance	alysis and over current protection:	z ruses, type construction t	and application.	(6)
Unit 3 Basics of Numerical estimation estimation numerical Unit 4 Transmis Introducti properties realization power swith protection protection protection protection protection protection unit 6 Bus bar production production protection pro	of calculation of fault currents, C. B. sele	ection fuse protection ox	ver current protection	(0)
Unit 3 Basics of Numerical estimation estimation numerical Unit 4 Transmis Introducti properties realization power swith protection protection protection protection protection protection protection unit 6 Bus bar production impedance	TMS setting, phase relay coordination, of			
Unit 3 Basics of Numerical estimation estimation numerical Unit 4 Transmis Introducti properties realization power swit Percentag relay with protection	on to directional over-current relays.		<i>g</i>	
Unit 4 Transmis Introducti properties realization power swit Unit 5 Protection Percentag relay with protection	numerical relaying:			(6)
Unit 4 Transmis Introducti properties realization power swi Unit 5 Protection Percentag relay with protection	l relaying fundamentals, sampling theore	m, anti-aliasing filters, le	ast square method for	` ,
Unit 4 Transmis Introducti properties realization power swi Unit 5 Protection Percentag relay with protection	n of phasors, Fourier algorithms, Four	ier analysis and discret	te Fourier transform,	
Unit 4 Transmis Introducti properties realization power swit Unit 5 Protection Percentag relay with protection	n of phasors from discrete Fourier transf	form, Applications for in	nplantation of various	
Unit 6 Introduction properties realization power switch Percentage relay with protection protection protection protection protection unit 6 Introduction power switch power switch Percentage relay with protection protection protection protection unit 6	l relays. Fundamentals of PMU and WAM			
unit 5 Protection Percentag relay with protection	ssion System Protection using distance r			(7)
Unit 5 Protection Percentag relay with protection	on to distance relaying, zones of protect			
Unit 5 Protection Percentag relay with protection	s, setting and coordination of distance			
Unit 5 Protection Percentage relay with protection protection protection Unit 6 Bus bar page Bus bar impedance	n of distance relays using numerical relayi	ng algorithms, Basics of Io	oad encroachment and	
Percentag relay with protection protection protection Unit 6 Bus bar p Bus bar impedance	ŭ			(7)
relay with protection protection protection Unit 6 Bus bar p Bus bar impedance	n of Transformer, Generator, Motors:	h ayawant mhanamanan m	anaantaaa diffamantial	(7)
protection protection protection Unit 6 Bus bar p Bus bar impedance	e differential protection, magnetic inrus h harmonic restraint, restricted earth fau			
unit 6 Bus bar p Bus bar impedance	against over fluxing. Generator protect			
Unit 6 Bus bar p Bus bar impedance	against unbalanced loading, loss of exci			
Unit 6 Bus bar p Bus bar impedance	of large motors.	tation, 1033 of prime mov	er and over speeding,	
Bus bar impedance	protection, Lightning Protection and sys	tem grounding:		(6)
impedance	protection: Different bus bar arrangem	ents, differential protecti	on of bus bar, high	(0)
	e differential relay. Lightening and switch			
arresters,	insulation coordination. System groun			
	ground mats.			
Text Books				
1. Fundamentals of p		cor C P Phido Prontico	hall, India, second edition	on, 2010."
2. A Web Course on	power system protection by Y. G. Paithank	ai, S. K. Dillue., Fielluce	<u> </u>	

1.	Switchgear protection and power system by Sunil S. Rao, Khanna Publishers, 13th edition, 2008.							
2.	Computer relaying for power systems by A.G.Phadke, J.S.Thorp-research studies press ltd. England John Wiley & sons							
	Inc. New York.							
3.	Protection of power systems by Blackburn.							
Us	'ul Links							
1.	http://www.cdeep.iitb.ac.in/webpage_data/nptel/Electrical%20Engineering/Power%20System%20Protection/TOC_M1.ht							
2.	https://nptel.ac.in/courses/108/107/108107167/							
3.	www.ocw.mit.edu							

Government College of Engineering, Karad

Final Year (Sem. - VII) B. Tech. Electrical Engineering

EE2704: Switchgear and Protection

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Understand the relaying principles, working of circuit breakers and L.T. switchgears.
- 2. Select the different components of protection system such as CT, PT, circuit breakers, relays etc.
- **3.** Identify, formulate and solve problems in protection of transformer, generator, transmission lines, bus bar, motors etc.
- **4.** Understand various protections utilised in power system to maintain stability of the same.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO ↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

			Government Co					
		Final Y	Year (Sem. – VI	5: Electrical D		ineering		
			EE 2/0	5: Electrical D	rives			T T
Tanahir	na Caba					Evamination Cala		
Teachir Lectures		04Hrs/week				Examination School		
Tutorial		00Hrs/week				$\frac{C1-1}{CT-2}$	15 15	
Total Ci						TA		
Total Ci	realts	04				ESE	10	
						Duration of ESE	60 02 Hrs 30	Min
Comman	Outcom	mag (CO)				Duration of ESE	02 Hrs 30) IVIIII
Students		nes (CO)						
			ryan Elastmanias	to domonatuata	duivo abana	otomistics and applies	otions of vonio	
		thematical skill with Po		to demonstrate	drive charac	cteristics and applica	ations of vario	us
		s in electrical drive syste		.:1:4				
	•	lynamics of electrical dri		•		of alastuical duissas		
		nd evaluate advanced co						
4. R	ecomme	end and Design suitable		•		ion.		1
			C	ourse Contents	8			Hour
								S
Unit 1		luction: Drive concepts						(4)
		rter; advantages, parts,						
		y-state, acceleration, dec	celeration); ope	n-loop, closed-	loop, torque	e, speed, and curre	nt control of	
		cal drive.						
Unit 2		nics of Electrical Dri						(6)
		s; control & stability of e						
		s of motor duty, IP prot		protection), ca	lculations fo	or rating, criteria for	selection of	
		for various applications,						
Unit 3		otor Drives: Review o						(6)
), Performance of dc	_	_	•	sis, speed control,	methods of	
		re voltage control, mode				1		
		ced Control Schemes						
		ter control, chopper-co	ontrolled de dr	ives, performa	nce analysi	s, Brushless DC 1	motor drive,	
TT *4 4		ations of DC drives	:	1	.1	11 (-44	1 1	(0)
Unit 4		tion Motor Drives: Re	view of basic c	naracteristics,	ciassical coi	itrol schemes (start	ing, braking,	(8)
	•	torque),						
		Control Schemes: State otorresistance control me			ntmal Ctatio	Cahambiya daiya an	1 Ctatio	
		r drive, Limitation of sca		•		Scherblus urive and	1 Static	
		Control Schemes: V				ategy for motor co	ntrol Direct	
		e Control (DTC), Field (acegy for motor co	muoi, Difect	
Unit 5		ronous Motor Drives				f Synchronous		(8)
omi 3		Staticvariablefrequency					chronousmot	(0)
		e, Introductiontoclosedlo						
		nent Magnet Synchronor	•		•			
Unit 6		ent components of stand						(4)
CIII U	and in	•	and mousulat (miros, praetica	. 100000 01 1	more office tions oct	com motors	
		for Specific Application	ons :Textile Mi	ll. Steel Rolling	Mill Cem	ent Mill. Sugar Mil	ll. Chemical /	
		hemical industry, Electri			,, Com	, Sugui Mil	,	
Textbo								
		ntalsofElectricalDrives,C	G.K.Dubev.Naro	saPublishingha	ouse			1
		rseinElectricalDrives,S.I						
		s and Control of Electric						
	ice Bool		ai Diives, i 10ti v	r, acii, opinigei	1 doneadon			I
		ower Electronics and A	C Drives R V	Rose Prentical		·d		1
1. IV	IOUCIII F	ower Electronics and A	C DIIVES, D. K.	Dose, I Tellittel	<u>1α11(1)1 VI.Ll</u>	u		

2.	ElectricalMotorDrives:Modelling,AnalysisandControl,R.Krishnan, PrenticeHall(I)Pvt.Ltd								
3.	Analysis of Electric Machine, P. C. Krause, Wiley-IEEE press 3 rd edition.								
Usef	Useful Links								
1.	http://nptel.ac.in/courses/108102046/								
2.	http://nptel.ac.in/courses/108108077/								
3.	http://nptel.ac.in/courses/108104011/								

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE 2705: Electrical Drives

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Apply mathematical skill with Power Electronics to demonstrate drive characteristics and applications of various controllers in electrical drive systems.
- **2.** Analyse dynamics of electrical drives, and its stability.
- 3. Analyse and evaluate advanced control schemes for torque-speed control of electrical drives.
- **4.** Recommend and Design suitable control schemes for required drive application.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	3	2	3	2	2	2	2				3	3
CO 2	3	3	3	3	3	1	3	2				3	2
CO 3	3	2	2	3	1	2	2	1				3	2
CO 4	3	2	1	2	2	3	1					3	

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	ı	-	ı	-
Understand	ı	-	ı	-
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create	-	-	-	-
TOTAL	15	15	10	60

	Government College of	Engineering, Karad						
	Final Year (Sem. – VII) B. To	ech. Electrical Engineering						
	EE2706: Computer Networ	k &Communication Lab						
Teaching Sche	me	Examination	Scheme					
Lectures		CT – 1						
Tutorials		CT – 2						
Practicals	02 Hrs/week	CA	50					
Total Credits	01	ESE						
		Duration of E	SE					
Course Outcor								
Student will be								
	t principles of computer networking							
	performance of various computer network							
	a Networks for LAN							
4. Analyze	networking protocols using Modern tools							
		periments						
Experiment 1	Study of Networking components (Hardware/software) i.e. cables, connectors, topologies,							
	switches/ hubs, crimping tool, IP addressing scheme, Subnetting, College Network Design							
Experiment 2	Construction of CAT 6/ CAT 7 Ethernet cal	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `						
	Layer 2 & 3 Switch Data Networking, PC N							
Experiment 3	Execution of Windows Networking Commands such s Ping, Netstat ARP, Netstat,							
	Hostname, Tracert, Ipconfig, NSLookup, Route, PathPing, NetDiag, Telnet, FTP, Netsh							
	Execution of Linux Networking Commands such as if config, ip, trace route, tracepath, ping,							
	netstat, ss, dig, nslookup, route, host, arp, iwconfig, hostname, curl or wget, mtr, whois,							
	ifplugstatus, iftop, tcpdump							
Experiment 4	Implementation of Error Detection / Error Correction Techniques							
T	a] bit stuffing b] Character stuffing. c] CRC							
Experiment 5	Implementation of Stop and Wait Protocol	<u> </u>						
Experiment 6	Implementation of Go back-N and selective							
Experiment 7 Implementation of simple client server architecture								
Experiment 8	Configuration of Network topology using P							
Experiment 9	Utilization of Wireshark network analyser,							
Experiment 10	Study of MANET and configure static r	outing protocol in MANET environi	ment using					
	NS2/OMNET/QualNet.							

Government College of Engineering, Karad
Final Year (Sem – VII) B. Tech. Electrical Engineering
EE2706: Computer Network & Communication Lab

Mapping of COs and POs

 	or con und ron					
Course Outcomes (CO)						
Student will be able to						
1.	Implement principles of computer networking					
2.	Analyze performance of various computer network					
3.	Build Data Networks for LAN					
4.	Analyze networking protocols using Modern tools					

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	3	1	2	-	-	-	-	-	-	-	-
CO 2	2	2	3	1	1	-	-	-	-	-	-	-	1
CO 3	2	1	3	1	2	2	1	-	-	-	-	2	2
CO 4	2	1	3	1	2	2	-	-	-	-	-	-	3

Assessment Pattern

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

Government College of Engineering, Karad									
	Final Year (Sem. – VII) B. Tech. Electrical Engineering								
		EE 2717 : Restructured Power System	Lab						
Teaching School	eme		Examination Sch	eme					
Lectures			CT – 1						
Tutorials			CT – 2						
Practical	02Hrs/week		TA/CA	25					
Total Credits	01		ESE	25					
Duration of ESE 3 Hrs									
Course Outco									
Students will b	e able to								
		platform for energy business.							
	7	et and Term Ahead Market online							
		ent of regional load dispatch centre							
4. Demonstra	te Business rules	and bye laws for online energy business							
		Experiments							
		ange India working online							
	•	Market (DAM) online							
3 Illust	rate Term Ahead	Market (TAM) online							
4 Dem	onstrate Business	rules and bye laws in 'Energy Exchange India'	online business						
5 Dem	onstrate grid mar	agement from wrldc, Mumbai							
6 Illust	rate load dispatc	n management at LDC, Kalwa							

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE 2717: Restructured Power System Lab

Mapping of COs and POs

тарр	ong of COs and POs
C	ourse Outcomes (CO)
St	udents will be able to
1.	Identify the need of online platform for energy business.
2.	Illustrate Day Ahead Market and Term Ahead Market online
3.	Demonstrate grid management of regional load dispatch centre
4.	Demonstrate Business rules and bye laws for online energy business

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO ↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

Final Year (Sem. - VII) B. Tech. Electrical Engineering

EE 2727 : Special Electrical Machines Lab

Laborator	y Scheme	Examination	n Scheme	
Practical	2 Hrs./week	CA	25	
Total Credits	1	ESE	25*	
		Total	50	

Course Outcomes (CO)

iournal.

Students will be able to

- 1 | Select proper electrical motor with control technique for required applications.
- 2 Analyze the advanced control techniques applicable for AC and DC motors in practice.
- Design, develop and simulate advanced control schemes for electrical motors.

Course Contents Experiment1 Simulation study of speed control of BLDC motor. Experiment 2 Simulation study of speed control of PMS motor. Experiment 3 Simulation study of speed control of SR motor. Experiment 4 Simulation study of speed control of Stepper motor. Experiment 5 Simulation study of speed control of Synchronous reluctance motor. Experiment 6 Study of performance characteristics of BLDC motor. Experiment 7 Study of performance characteristics of PMS motor. Experiment 8 Study of performance characteristics of SR motor. Experiment 9 Study of performance characteristics of Stepper motor. Study of performance characteristics of Synchronous reluctance Experiment 10 motor. **Submission: ESE** Minimum 8 experiments to be performed / simulated and evaluated in

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE 2727 : Special Electrical Machines Lab.

Mapping of COs and POs

ւսբբ	or cos unu i os						
Co	ourse Outcomes (CO)						
Stı	udents will be able to						
1.	Select proper electrical motor with control technique for required applications.						
2.	Analyze the advanced control techniques applicable for AC and DC						
	motors in practice.						
3.	Design, develop and simulate advanced control schemes for electrical						
	motors.						

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO ↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

	G	overnment C	College of Eng	ineering, Karad		
				Electrical Engine		
	EE2	737: Industri	al Automation	n and Control L	ab	
Teaching Schen	me				Examination Sch	eme
Lectures					CT – 1	
Tutorials					CT-2	
Practicals	02Hrs/week				CA	25
Total Credits	01				ESE	25
					Duration of ESE	
Course Outcon						
Student will be		.1	1	1:00		
	the ladder diagram fo			ifferent instruction	1.	
	gic base to control the					
	and test ladder progra mic diagram in SCA			action		
4. Create IIII		DA system for	Experime			
Experiment 1	Use PLC to test ST	APT STOP 10			evetam	
Experiment 2	Develop/Execute a					ounter
Experiment 2	comparison, logical			application using	ionowing-timer, e	ounter,
Experiment 3	Use PLC to contro			np, motor, push	button switches,	
_	proximity sensor			1.		
Experiment 4	Measure temperatu	re of the given	liquid using RT	TD or Thermocoup	ole and PLC.	
Experiment 5	Develop and test la					sor.
Experiment 6	Develop and test la				1 ,	
Experiment 7	Develop and test la					
Experiment 8	Develop and test la					
Experiment 9	Develop and test la	<u>, , , , , , , , , , , , , , , , , , , </u>			with suitable drive	ers
Experiment 10	a. Identify variou			* *		
	drive)	r r			() (522	
	b. Control speed	of AC/DC mo	otor using VFD)		
Experiment 11	Develop a SCADA					
Experiment 12	Simulate tank level					
=:-P************************************		t t t t t t t t t t t t t t t t t t t				

Government College of Engineering, Karad

Final Year (Sem. -VII) B. Tech. Electrical Engineering

EE2737: Industrial Automation and Control Lab

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Simulate the ladder diagram for the given application using different instruction.
- 2. Design logic base to control the various devices.
- **3.** Develop and test ladder program for the given applications.
- **4.** Create mimic diagram in SCADA system for the given application.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					2	3
CO 4	2	2	2	1	1	1							3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			5	5
Evaluate			5	5
Create			5	5
TOTAL			25	25

Government College of Engineering, Karad

Final Year (Sem. – VII) B. Tech. Electrical Engineering

EE 2747: Smart Grid Laboratory

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. appreciate the difference between smart grid & conventional grid.
- **2.** apply smart metering concepts to industrial and commercial installations.
- **3.** formulate solutions in the areas of smart substations, distributed generation, and wide area measurements.
- **4.** provide smart grid solutions using modern communication technologies.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	1	1	1	2	2					2	3
CO 2	3	2	2	1	2	3	1					1	3
CO 3	3	2	3	2	3	1	2					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

		Government College of Engineering, Karad		
	Final '	Year (Sem. – VII) B. Tech. Electrical Engine	ering	
	EE 271	3 : Generation Planning and Load Forecastin	ng Lab	
Teaching Sc	heme]	Examination Sch	eme
Lectures			CT – 1	
Tutorials			CT – 2	
Practicals	02Hrs/week		CA	25
Total Credits	01		ESE	25
			Duration of ESE	3 Hrs.
Course Out				
Student will				
		ate distribution system based on forecasted data		
		luation of generation, transmission and distribution	system reliability	and their
ımpact	s on system planning.	1 1	. 1 .	11 1
		yze and evaluate an electric power system for gener	ation planning an	d load
forecas	sung	Experiments		
Experiment 1	To study Undro	ower station characteristics		
Experiment 2		power station characteristics		
Experiment		nents of Structure of Power System.		
Experiment		atus of National and Regional Planning, for Power	evetam	
Experiment	•	<u> </u>	system	
Experiment		estribution problems.		
Experiment		t method of Economic dispatch.		
Experiment	- J	ne the Methods of short term, medium term and lo	na torm load force	nactina
			ng term mad forec	asung
Experiment		nsmission and distribution planning.		
Experiment		analysis in generation system		
Experiment		cal Forecasting technique		
Experiment		, distribution Data collection of state.		
any eight exp	eriments from above 1	1St.		

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE 2718: Generation Planning and Load Forecasting Lab

Mapping of COs and POs

Cours	e Outcomes (CO)
Studen	at will be able to
1.	To design, analyze and evaluate distribution system design based on forecasted data
2.	Inculcate the concepts of evaluation of generation, transmission and distribution system reliability and their
	impacts on system planning.
3.	use the tools required to analyze and evaluate an electric power system for generation planning and load
	forecasting

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1
CO ↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					1	3
CO 4	2	2	2	1	2	1							2

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

		vernment College of Engineering, Karad							
	Final Yea	r (Sem. – VII) B. Tech. Electrical Engineering							
	EE 2848	3 : Power System Operation and Control Lab							
Teaching Sche	me	Examination	Scheme						
Lectures		CT – 1							
Tutorials		CT – 2							
Practicals	02Hrs/week	CA	25						
Total Credits	01	ESE	50						
		Duration of I	ESE 3 hrs						
Course Outcor									
Student will be									
		le for given system using software tool.							
		control using software tool.							
	-	ance and power factor improvement test							
4. Analyse	optimum loading in po	•							
		Experiments							
Experiment 1	Find the critical clear	ing angle by applying equal area criterion for any power sys	tem						
		ne same using any dedicated software							
Experiment 2		e in speed, frequency and steady state error corresponding to							
		disturbance in a single area and a two area power system, with and without supplementary							
	control using softwar								
Experiment 3		ver system component (HIGH VOLTAGE TESTING)							
Experiment 4		tion resistance of the given LT &HT cable by using appropr	ate testing						
	equipment								
Experiment 5		nce to earth of the given earthing system and design an earth	iing system						
F :	from soil resistivity of								
Experiment 6	experimentally.	apacitors for power factor correction for a load and verify it							
Experiment 7	Check the specification	ons of the given Current Transformer and Potential Transfor	mer.						
Experiment 8	a)Determine Power to compensation	rmine Power transfer capability of the transmission line with and without series							
	1	impensation on power transfer capability and system stability	N.						
Experiment 9		generators neglecting transmission losses	<u>'</u>						
Experiment 10	Ontimum loading of	generators with penalty factors							
		perform some of the experiment.							

Government College of Engineering, Karad
Final Year (Sem. – VII) B. Tech. Electrical Engineering
EE 2848: Power System Operation and Control Lab

Mapping of COs and POs

Titapping	g of cos and tos								
Cours	Course Outcomes (CO)								
Studen	nt will be able to								
1.	Determine critical clearing angle for given system using software tool.								
2.	Perform automatic generation control using software tool.								
3.	Perform insulation, earth resistance and power factor improvement test								
4.	Analyse optimum loading in power system.								

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	2	3	2					2	3
CO 2	1	2	2	1	2	3	1					2	2
CO 3	1	1	1	2	3	3	1					2	3
CO 4	2	2	2	1	2	3	1					2	3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

	Go	vernment College of Engineering, Karad							
	Final Ye	ar (Sem. – VII) B. Tech. Electrical Enginee	ring						
	E	EE2709: Switchgear and Protection Lab							
Teaching Schen	ne		xamination Sch	eme					
Lectures			T – 1						
Tutorials			T-2						
Practicals	02 Hrs/week	CA		25					
Total Credits	01		SE	25					
		Di	uration of ESE	3 hrs					
Course Outcom									
Student will be a									
		uipments e. g. fuse, MCB, relays etc. and analyze t	the test results.						
	d operation & workin								
3. Perform si	mulation and modelii	ng of protection system using ETAP/PSCAD/ATP	<u>. </u>						
Empariment 1	C 1	Experiments							
Experiment 1		ne diagram drawing using ATP.							
Experiment 2		ordination using ETAP.							
Experiment 3	To study various fuses and plot inverse time characteristic of fuse.								
Experiment 4	To demonstrate the operation of various MCBs, ELCBs and plot inverse time								
F		ICBs. Study of MCB protection co-ordination.							
Experiment 5		on and working of Induction Disc Relays.							
Experiment 6	IDMT relay charac								
Experiment 7		acteristics of over voltage Relay.							
Experiment 8		acteristics of under voltage Relay.							
Experiment 9	_	acteristics of over current Relay.							
Experiment 10	Operation of Buchl	•							
Experiment 11	_	king of feeder protection.							
Experiment 12	Operation and work	king of Differential protection of Alternator							
Experiment 13	Operation and worl	king of Differential protection of Transformer							

Government College of Engineering, Karad Final Year (Sem. – VII) B. Tech. Electrical Engineering EE2709: Switchgear and Protection Lab

Mapping of COs and POs

appi	ng of COs and TOs
Co	urse Outcomes (CO)
Stu	ident will be able to
1.	Demonstrate tests on various equipments e. g. fuse, MCB, relays etc. and analyze the test results.
2.	Understand operation & working principle of relay.
3.	Perform simulation and modeling of protection system using ETAP/PSCAD/ATP.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1		2	2	1	1	2	2					2	3
CO 2		2	2	1	2	3							2
CO 3		1	1	2	3	2	1					2	3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

				h. Electrical Enginerives Laboratory						
			. Electrical Di	. I too Laboratory						
Teaching Sche	me				Examination Sch	neme				
Lectures					CT – 1	-				
Tutorials					CT – 2	-				
Practical	02 Hrs/week				CA	25				
Total Credits	01				ESE	25				
					Duration of ESE	3 hrs				
Course Outcor	nes (CO)									
Student will be	able to									
1. Select prop	per electrical drive	motor for re	quired application	ons.						
				C and DC motors in						
3. Simulate,	Design and Develo	p advanced		for electrical drives.	1					
				riments						
Experiment 1				y motor (AC, DC) (j	performance based)					
Experiment 2	Performance based experiments for DC motor									
	a. ControlofDCmotorusing1-phconverters									
			ing3-phconverte							
			using dual conve	erters						
Experiment 3	Simulation based experiments for DC motor									
	a. Modelling of DC motor (separately excited motor, series motor)									
	b. DC – DC converter fed DC motor Drive (open-loop, closed-loop)									
	c. Dual Converter-fed (1-ph, 3-ph) separately excited motor drive									
Experiment 4	Performance based experiments for 3-ph induction motor									
	a. T-N characteristics using voltage control									
	b. T-N characteristics using V/F control (open-loop, closed-loop)									
Experiment 5	Simulation based									
	a. DTC of 3	8-ph inductio	n motor							
	b. FOC of 3-ph induction motor									
Experiment 6	Performance / Sin	nulation base	ed experiments f	or permanent magne	et synchronous moto	or				
Experiment 7				or reluctance motor						
Experiment 8					n, calculations,					
•	Study experiment(s) based on applications(unit 6) of motor (design, calculations, simulations, industry visits)									
		•								
Above list of ex	speriment list is for	r guidelines.	concern faculty	can add / change i	the experiments bas	sed on ad	vance			
	lications in electric	-	<i>yy</i>	g. ·						
0, 11										

Government College of Engineering, Karad	
Final Year (Sem. – VII) B. Tech. Electrical Engineering	
EE 2710 : Electrical Drives Laboratory	

Mapping of COs and POs

Course	e Outcomes (CO)
Studen	at will be able to
1.	Select proper electrical drive motor for required applications.
2.	Analyse the advanced control technique applicable for A C and DC motors in practice.
3.	Simulate, Design and Develop advanced control schemes for electrical drives.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	3	2	3	2	2	2	2				3	3
CO 2	3	3	3	3	3	1	3	2				3	2
CO 3	3	2	2	3	1	2	2	1				3	2

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember	-	-	ı	ı
Understand	-	-	-	-
Apply	-	-	10	10
Analyse	-	-	10	10
Evaluate	-	-	5	5
Create	-	-	-	-
TOTAL	-	-	25	25

Final Year (Sem. – VII) B. Tech. Electrical Engineering EE 2711:Case Study		Government College of Engineering, Kara	ad						
Teaching Scheme Examination Scheme Lectures 00 Practical 02Hrs/week Total Credits 01 TA 50 ESE Duration of ESE 01 Hr Course Outcomes (CO)		Final Year (Sem VII) B. Tech. Electrical Eng	ineering						
Lectures 00 CT - 1 Practical 02Hrs/week CT - 2 Total Credits 01 TA 50 ESE Duration of ESE 01 Hr Course Outcomes (CO) COURTION OF ESE 01 Hr		EE 2711:Case Study							
Lectures 00 CT - 1 Practical 02Hrs/week CT - 2 Total Credits 01 TA 50 ESE Duration of ESE 01 Hr Course Outcomes (CO) COURTION OF ESE 01 Hr		Ţ.							
Practical 02Hrs/week CT - 2 Total Credits 01 TA 50 ESE Duration of ESE 01 Hr Course Outcomes (CO) Outcomes (CO) Outcomes (CO)	Teaching Sche	me	Examination Sch	eme					
Total Credits 01	Lectures								
ESE Duration of ESE 01 Hr Course Outcomes (CO)	Practical	02Hrs/week							
Duration of ESE 01 Hr Course Outcomes (CO)	Total Credits	01		50					
Course Outcomes (CO)									
		Duration of ESE 01 Hr							
Students will		mes (CO)							
	Students will								
1. Demonstrate knowledge of the state of the art in the relevant subjects of Electrical engineering.		· ·	cal engineering.						
2. Investigate technical area beyond curriculum.									
3. Analyse the work in the literature to define scope of proposed.		* * *							
4. Apply knowledge for detailed analysis and disseminate it.	4. Apply known				1				
					Hours				
Seminar to be delivered by the students on general topic related to Electrical engineering.		•	to Electrical engin	eering.					
The selected topic can be any of the following:		•							
1. Presentation of study made after referring to a peer reviewed journal paper		. Presentation of study made after referring to a peer reviewe	d journal paper						
2. Presentation of any of the International standard and its IS equivalent	2	. Presentation of any of the International standard and its IS e	quivalent						
3. Presentation based on any magazine article and its references published by	3	. Presentation based on any magazine article and its	references publish	ned by					
professional societies (e.g. IEEE Power engineering society, Power electronics		professional societies (e.g. IEEE Power engineering so	ciety, Power elec	etronics					
society, Industrial electronic society,ISO9001-2015 etc		society, Industrial electronic society, ISO 9001-2015 etc	-						

Government College of Engineering, Karad

Final Year (Sem. – VII) B. Tech. Electrical Engineering

EE 2711:Case study

Mapping of COs and POs

Course Outcomes (CO)

Students will

- 1. Demonstrate knowledge of the state of the art in the relevant subjects of Electrical engineering.
- 2. Investigate technical area beyond curriculum.
- **3.** Analyse the work in the literature to define scope of proposed.
- **4.** Apply knowledge for detailed analysis and disseminate it.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3		1	1	2	2	1		3	2		3	
CO 2	3	2	1		2	3	1	1	3	3		3	
CO 3	1				3			2	3	3	1	3	
CO 4	3	2	2	1	1	2	2	2	3	2		3	1

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand			10	
Apply			10	
Analyse			20	
Evaluate			10	
Create				
TOTAL			25	

Government College of Engineering, Karad									
			B. Tech. (Sem. – VII) Electrical Engine	ering					
		E	E 2712:Industrial Training & Technical Pr	resentation					
Teachin	g Schei	me		Examination Sch	eme				
Lectures		00		CT – 1					
Tutorials	Tutorials 01Hr./week CT - 2								
Total Credits 01		TA	50						
				ESE					
Duration of ESE 01 Hr.									
Course	Outcon	nes (CO)							
Students	will be	able to							
1. dem	onstrate	knowledge of	processes and functionality of industry wherein	the training is sought					
2. Ana	lyse rec	ent trends and	technologies used in industry.						
3. Impi	ove co	mmunication sl	xills.						
4. Ana	lyse rel	ation between t	heory and practice.						
			Course Contents			Hours			
	Students will undergo four weeks industrial training in industry (preferably related to Electrical								
	Engineering) of their interest during summer vacation. They will prepare report on it and make								
	presentation before their classmates and teachers in first semester of final year of B. Tech. Also, they								
	will s	ubmit compreh	ensive report on training in softcopy/ hard copy.						

Government College of Engineering, Karad B. Tech. (Sem. – VII) Electrical Engineering EE 2712:Industrial Training & Technical Presentation

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. demonstrate knowledge of processes and functionality of industry wherein the training is sought
- **2.** Analise recent trends and technologies used in industry.
- **3.** Improve communication skills.
- **4.** Analyse relation between theory and practice.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3		1	1	2	2	1		3	2		3	
CO 2	3	2	1		2	3	1	1	3	3	2	3	
CO 3	1							2	3	3	1	3	
CO 4	3	2	2	1	1	2	2	2	3	2		3	

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand			10	
Apply			10	
Analyse			20	
Evaluate			10	
Create				
TOTAL			50	

SEMESTER VIII

			Government	College of Engi	neering, Kara	ad		
		Fina	•	VIII) B. Tech. I		ineering		
	<u> </u>		EE2	801: Laws for Er	igineers			
7EC	1. 0.1					T		
Lect	ching Sch	03Hrs/week				Examination Sch CT – 1		
Tuto		00Hrs/week				CT – 1 CT – 2	15 15	
	l Credits	03				TA	10	
1014	Cicuits	03				ESE	60	
						Duration of ESE	02 Hrs	30 Min
Cou	rse Outco	mes (CO)				1		
	ents will b							
				n their profession.				
				nenting universal h				
	•		racteristics of pe	eople-friendly and	eco-friendly pi	roduction systems,	technolog	gies and
		nt models	ons and IPR, Cop	vright				
4.		e fights of Election	nis and it K, Cop	Course Conten	ts			Hours
Uni	t 1 Cons	stitutional Law	: Constitutional			Rights, Judicial	Activism	(6)
				· ·		Secularism and R		(-)
	freed	oms; Directive p	rinciples of State	policy; Fundamer	ntal Duties; Em	ergency provisions	– kinds,	
		requirements an						
Uni					•	ng; Industrial Emp	loyment	(8)
				a's Compensation				
						oanies, public and anies – Internation		
						er; Corporate liabil		
		riminal.	,			,	,,	
Uni	t 3 Gene	eral Principles o	f Contract unde	r Indian Contrac	et Act, 1872: Ge	eneral principles of	contract	(6)
						contracting party, l		
						ature, advantages, u		
						judicial approach	to such	
Uni				ween two standard		erty, main forms	of ID	(8)
CIII						onal instruments		(0)
						ention and inter		
	l l		ig IPRs, WTO e		Turis conv	cittoii una inter	inational	
					opyright litera	ry, dramatics and	musical	
						orograms, Owner		
						and procedures in		
Unit		_		-		Representation of		(6)
						directions and co		
						ouse of people an		
	l l					rage. Candidate e		
	right	S						
Uni	t 6 Hun	nan Rights an	d Public Inter	national Law co	overing Huma	n Rights in Inter	national	(6)
				_		Historical develop		
	hum	an rights; Huma	nn Rights in Ind	ian tradition and	Western tradit	ion; Covenant on	Civil &	

	Political Rights 1966 including Optional Protocol – I (Individual Complaint Mechanism) & Optional Protocol – II (Abolition of Death Penalty); Covenant on Economic, Social and Cultural Rights 1966 including Optional Protocol – I (2002); UN Mechanism and									
	specialized agencies, (UNICEF, UNESCO, WHO, ILO, FAO, etc.)									
_	t Books									
1.	P.M. Bakshi (2003), Constitution of India, Universal Law Publishing Co.									
2.	2. S.K. Awasthi& R.P. Kataria(2006), Law relating to Protection of Human Rights, Orient Publishing									
3.	3. MeenaRao (2006), Fundamental concepts in Law of Contract, 3rd Edn. Professional Offset									
4.	1									
5.										
6	· · · · · · ·									
Ref	Reference Books									
1.	Cornish W. R. (2008), Intellectual Property Rights, Patents, Trademarks, Copyrights & Allied Rights,									
	Sweet & Maxwell									
2.	H.M. Seervai (1993), Constitutional Law of India, Tripathi Publications									
3.	Sethna, Indian Company Law									
4.	Agarwal H.O.(2008), International Law and Human Rights, Central Law Publications									
5.	Cornish W. R. (2008), Intellectual Property Rights, Patents, Trademarks, Copyrights & Allied Rights,									
	Sweet & Maxwell									
Use	ful Links									
1.	https://onlinecourses.nptel.ac.in/noc20_hs55/preview									
2.	· · · · ·									
3.	https://legalaffairs.gov.in/									

Government College of Engineering, Karad

Final Year (Sem. – VIII) B. Tech. Electrical Engineering

EE2801: Laws for Engineers

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Familiarise with basic laws that would help in their profession.
- 2. Utilize the professional competence for augmenting universal human order.
- 3. Identify the scope and characteristics of people-friendly and eco-friendly production systems, technologies and management models.
- **4.** Identify the rights of Elections and IPR, Copyright.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	1	1	1	2	2	1					3	
CO 2	3	2	1	1	3	3	1					3	
CO 3	1	1	1									3	
CO 4	3	2	2	1	1	2	2					3	

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand			5	5
Apply			5	5
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

			Government	College of Engine	ering, Kara	nd		
		Fina		VIII) B. Tech. Elec				
			EE2	802: Embedded Sys	tem			, ,
TD.								
	ching Sch					Examination Sch		
Lecti		03Hrs/week				CT – 1 CT – 2	15	
Tuto		00Hrs/week 03				TA	15 10	
Total	l Credits	03				ESE	60	
						Duration of ESE		30 Min
Com	rse Outco	mes (CO)				Duration of ESE	02 1113	JO WIIII
	ents will b							
			ing ARM control	lers to real-life situation	ons			
				data handling / proces		S		
				gy dissipation, data exc	change speed	ds etc		
4. I	Program, t	est and debug co	le using Keil soft					
				Course Contents				Hours
Unit		I Embedded Sys			1			(8)
	Overview of Microcontroller, The RISC Design Philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software.							
T T •4		•		ed System Software.				(0)
Unit		1 Processor Fun		isters (CPSR), Pipelir	a avaantian	as Interments and th	a vootor	(8)
				sion, Arm Processor F		is, interrupts and th	e vector	
Unit		cient C Program		sion, Arm riocessor r	annics.			(4)
				ation, Basic C Data Ty	mes. C Loor	oing Structures, Reg	ister	(4)
				asing, Structure Arrang				
				nline Functions and In				
Unit		ption and Inter						(7)
				pt Handling Schemes				
Unit		-	•	nchronization of Pro	,			(6)
			* *	Multiple Threads in a	* *			
				n Functions, ISRS and tess Communication,				
				Functions, Pipe Functi				
				unctions, Socket Func			c Queuc	
Unit			g using LPC 21		irons, ra e r	unctions.		(7)
				stepper motor interfa	cing, digital	l -input output inte	erfacing,	
		•	SPI bus Protoco		C. C		0.	
		_						
						T		
	Books			~			~ .	
1	Andrew S 2004.	Sloss, "ARM Sys	em Developer's	Guide", Elsevier Inc.,	Morgan Kai	ufmann publication,	Student	Edition,
		ıl, "Embedded Sy	stems- Architectu	re, Programming and	Design", Th	ne McGraw-Hill cor	npanies,	2nd
1	Edition, 2	•		,,,	8)		Ι ,	
3.	Jack Gans	ssle, "The Art of	Designing Embed	ded Systems", Newne	ss, 1999.			
	rence Bo							
			Microcomputer S	System: Real Time Int	erfacing", B	rooks/Cole, 2000		·
2.	Programn	ning technique A	RM DUI 0021A.					

3.	David Simon, "An Embedded Software Primer", Addison Wesley, 2000							
4.	K.J. Ayala, "The 8051 Microcontroller: Architecture, Programming, and Applications", Penram Intl, 1996.							
5.	By Frank Vahid, Tony Givargis, "Embedded System Design", Wiley Publication, 2nd Edition, 2002.							
Use	Useful Links							
1.	http://nptel.ac.in/courses/108102045/							
3.	https://www.youtube.com/watch?v=y9RAhEfLfJs							

Government College of Engineering, Karad

Final Year (Sem. – VIII) B. Tech. Electrical Engineering

EE2802: Embedded System

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Suggest design approach using ARM controllers to real-life situations.
- 2. Design interfacing of the systems with other data handling / processing systems.
- 3. Appreciate engineering constraints like energy dissipation, data exchange speeds etc
- **4.** Understand and implement the instruction set for ARM processor.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

ELECTIVE V

			ELECT					
			Government College o	f Engineer	ing, Kara	d		
		Fin	l Year (Sem. –VIII) B. T	Cech. Elect	rical Engi	neering		
			Elective V- EE	2813:FAC	CTS			
Teac	ching Sch	eme				Examination Sch	eme	
Lect	ures	03Hrs/week				CT – 1	15	
Tuto	rials	00Hrs/week				CT – 2	15	
Tota	l Credits	03				TA	10	
						ESE	60	
						Duration of ESE	02 Hrs	30 Min
Cou	rse Outco	mes (CO)						
Stud	ents will b	e able to						
1.	Apply kno	wledge to learn l	ACTS concepts.					
2.	Analyse p	ower system com	pensation requirements.					
3.	Analyse sı	ecific use of FA	CTS devices					
4.	Analyse co	ompensation need	in power system.					
			Course					Hours
Unit			ansmission Lines, Power F					(8)
			ability Considerations of a T	Transmission	Interconne	ection, Relative Imp	ortance	
	of co	ntrollable Param	ters.					
Unit	t 2 FAC	TS Controllers,	Benefits from FACTS	technology,	HVDC v	s. FACTS Static	Shunt	(6)
		pensators						
Unit	3		Compensation, Methods					(6)
		•	nd STATCOM, Comparison	Between S	ГАТСОМ а	and SVC, Static Var	•	
	Syste							
Unit			Compensation, Variable In	npedance T	ype Series	Compensators, Sv	vitching	(6)
		verter Type Serie						
Unit			se Angle Regulators: Object					(8)
			or-Controlled Voltage and P	hase Angle	Regulators,	Switching Convert	er-	
T T •			ase Angle Regulators	1' D	El C	11 (IDEC) I :	1	(6)
Unit			Controller (UPFC) and Inter				auction,	(6)
Torré		Unified Power F	ow Controller, The Interline	Power Flow	Controller	(IPFC)		
	Books	ding EACTS N	G. Hingorani & Gyugyi, IEI	EE Dragg 10	00			
			G. Hingorani & Gyugyi, iEi	EE Piess, 19	199			
	Power El		Electrical Systems E Asl	NO V.C. Acc	alidia O A	maria I ama T IE N	Lillon No	
		gineering Series.	n Electrical Systems, E. Ach	ia, v.G. Age	enuis, O. Al	naya-Lara, T. J.E. N	illiel Ne	wiies
			rollers Theory, Modeling, ar	nd Annlication	one Kalvan	K SanMay Ling S	n IEEEI	Oroce A
		ILEY & SONS, 1		ы тррисан	ons,ixaiyali	IX. Delivicy Ling 30	-11,11212171	1035,A
			System (FACTS) Devices, E	rnestNkusi	AV Akadar	nikerverlag nuhliga	tion	
			ystems (FACTS), Yong H			<u> </u>	11011	
	ul Links	ac transmission	ysicins (TACIS), Tolly II	ua song iee 	1 1033, 199	<i>)</i>		
		atel ac in/course	/201/106/201106034/					<u> </u>
1.	nttps://n	nei.ac.iii/course	/ 201/ 100/ 201100034/					

Government College of Engineering, Karad Final Year (Sem. –VIII) B. Tech. Electrical Engineering Elective V- EE 2813:FACTS

Mapping of COs and POs

Course	Outcom	es (C	(O)

Students will be able to

- 1. Apply knowledge to learn FACTS concepts.
- 2. Analyse power system compensation requirements.
- 3. Analyse specific use of FACTS devices
- 4. Analyse compensation need in power system.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	1			2	1		1				3	
CO 2	3	2	2	1	2	1		1		1		3	
CO 3	3	3	2	2	1			1		1		3	
CO 4	3	3	1	1	3	1		1	1	1		1	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

			Government C	College of Engineer	ring, Kara	d		
		Fina		III) B. Tech. Elec				
				23: Electric and I				
Teachir	ng Schei	me				Examination Sch	eme	
Lectures		03Hrs/week				CT – 1	15	
Tutorial	S	00Hr./week				CT-2	15	
Total C1	redits	03				TA	10	
						ESE	60	
						Duration of ESE	02 Hrs	30 Min
		nes (CO)						
Students								
1. Ac	equire k	nowledge about	fundamental conce	pts, principles, analy	sis of elect	ricand hybrid vehic	cles.	
			hicle applications.					
				charging and energy				
4. Co	mpare a	and contrast cha	`	g of electric machine Course Contents	and the int	ternal combustion e	engine.	TT
Unit 1				Course Contents				Hours 7
Unit 1		•	nd electric vehicles.	61 1 1 1 1 1	1 . 1			/
			-	f hybrid and electric	vehicles			
			lrive-trains on energ					
		•	erformance, vehicle	power source charac	terization –	transmission		
	ch	aracteristics.						
Unit 2	• Bas	ic concept of hy	brid traction.					7
	• Intr	oduction to vari	ous hybrid drive-tra	in topologies.				
	 Pov 	ver flow control	in hybrid drive-trai	n topologies.				
Unit 3	• Bas	ic concept of ele	ectric traction.					6
	• Intr	oduction to vari	ous hybrid drive-tra	in topologies.				
Unit 4				ed in hybrid and elect	ric vehicles			7
			control of DC Motor	•				
		•		Motor drives, Perma	nent Magne	et Brushless de mote	or &	
		•		Reluctance Motor d	•	or Drusiness de more	л «	
Unit 5				internal combustion) characteristics		7
		•		power electronics ,S	•		nology	
Unit 6				•				7
Omto				their strategies used	•		•	_ ′
T4 D -		ssification of dif	fferent energy mana	gement strategies,Co	mparison of	different		
Text Bo	ooks ectric Ar	d Unhaid El	lectric Vehicles	Proking Systems	& NVII co	nsiderations, Author	r Iuraan	D V
		Sae Internation		Diakingsystems	α NVII COI	nsiderations, Author	i Juigen	к.к.,
Referen			lai					
			cles Design Fundam	entals, Author Husa	in Iabal			
				ell Vehicles ,Fundam	_	ry and Design		
			imin , Emadia A. Cı	·		., 2001811		
			,	·				

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE2823: Electric and Hybrid Vehicles

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Acquire knowledge about fundamental concepts, principles, analysis of electricand hybrid vehicles.
- **2.** Learn electric drives in vehicle applications.
- **3.** Demonstrate the skill for battery charging/discharging and energy management in electric vehicles.
- **4.** Compare and contrast characteristics matching of electric machine and the internal combustion engine.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

			Governme	nt College of	f Engineer	ring, Kara	ıd		
		Fina	al Year (Sem.						
			Elective V - F	EE 2833 : Ad	lvanced C	ontrol Sys	stem		
Teachin	g Schen						Examination Sch	ieme	
Lectures		03Hrs/week					CT – 1	15	
Tutorial		00Hr./week					CT – 2	15	
Total Cr	edits	03					TA	10	
							ESE	60	20.7.5
	0 1	(60)					Duration of ESE	02 Hrs	30 Min
		es (CO)							
Students			foodbook linear	wigation for the	nonlinoon	aantmal arvat			
		e knowledge of knowledge of							
		ng Mode Contr			ai aiiu iioiiii	ilicai system	115		
		r and nonlinear		mnlementing	advanced c	ontrollers			
4. 1505.		a una nommea	00001 (010 101 1	Course (ond one is			Hours
Unit 1	Introd	luction to Line	ar and Nonlin			eatures of li	near and nonlinear		(7)
							v approach. Concep	ot of	
	feedback linearization. Conditions of feedback linearization.								
	Partial	feedback linear	rization. Contro	ol system desig	gn using fee	dback linea	rization.		
Unit 2						:Notion of	Variable structure s	system	(7)
		riable structure							
		g mode control							
Unit 3							sign of SMC for lin		(6)
	_		-		Design of Si	MC for non	linear system using	its	
Unit 4		entation as linea			a modosiC	hottoring or	nalysis of First Orde	or SMC	(9)
Unit 4		pt of Second or				mattering ar	larysis of First Orde	er swic.	(8)
		of SOSMC usi				m			
Unit 5							advanced control	lers:	(5)
		erger observer,					, uu vuiiceu coiiti oi		(0)
Unit 6							ed Controller design	n for any	(7)
	power	electronic syste	em. Controller o	design for PM	SM/BLDC	motor. Adv	anced controller de	esign for	
	Power	electronic syste	ems-buck/boost	t converter.					
Text Bo									
			<u> </u>	<u> </u>		•	Prentiss hall Press, 1		
			geon, "Sliding	mode control	Theory and	Application	ns", Pearson, 2010.		
Referen			n1 1 -	.1 5 .1	// ~1: 1:	3.6.1			
		sel, Christophe	er Edwards, Le	eonid Freidma	an, " Slidi	ng Mode (Control and Obser	vation"	Springer
	olisher	Zhalil "Mamlin	oon Control'? De	orgon Dublial	on 2015				
2. Has	ssan K. I	Khalil, "Nonline	ear Control Pe	arson Publish	er 2015				

Government College of Engineering, Karad

Final Year (Sem. – VIII) B. Tech. Electrical Engineering

Elective V - EE 2833 : Advanced Control System

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- 1. Demonstrate knowledge of feedback linearization for the nonlinear control system
- **2.** Demonstrate knowledge of sliding mode control for linear and nonlinear systems
- 3. Design Sliding Mode Control
- **4.** Design linear and nonlinear observers for implementing advanced controllers

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	3	2	1	1	2	2					2	3
CO 2	1	2	3	1	1	3	1					1	3
CO 3	3	1	1	2	3	2	2					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	4	20
Evaluate	5	5	3	20
Create				
TOTAL	15	15	10	60

			Covern	ment College	of Engineer	ing Karad			
		Fina		em. – VIII) B.		- O/			
				EE 2843 : Po					
		Lice		LL 2043 . T 0	wer Quant	y & Hain	iones		
Tea	ching Sche	me					Examination Sch	eme	
	tures	03Hrs/week					CT – 1	15	
	orials	00Hrs/week					CT – 2	15	
	al Credits	03					TA	10	
							ESE	60	
							Duration of ESE	02 Hrs	30 Min
Cou	rse Outcor	nes (CO)	l					-1	
Stuc	lents will be	e able to							
1.	Understand	the different power	er quality i	indices.					
		e ill effects of all p			power syste	em.			
3.	Solve wirin	g and grounding p	roblems.						
4.	Analyse ha	rmonics and filters	in power	system.					
				Course	Contents				Hours
Uni	t 1 Introdu	uction to Power O	uality (PO)) : Classification	n of PO prob	olems, Caus	ses PQ problems, Et	fects of	(4)
		_			~ *		nsibilities of suppli		
	users				•		**		
Uni	t 2 Power	Quality Standard	s and Moi	nitoring : Pow	er Quality T	Cerminologi	ies, Definitions, Sta	andards,	(6)
		oring, Numerical(s		_					
Uni							ution Static compe		(6)
		• • •	_	·	R), Unified	Power Qua	ality Conditioner (UPQC),	
		Power Transfer Sv	•						
Uni							non-sinusoidal cor		(8)
		·					monic Assessment	•	
	harmo		monic dist	ortion, Device	s for controll	ling harmoi	nic distortion, Stand	lards on	
Uni		: Passive Power F	iltara Aati	iva Davvar Eilta	no Usibrid De	orvor Eiltor	Numarical(a)		(0)
Uni		Studies on Power C			18, 11yb11d F	JWEI THIEIS	s, Ivuillerical(s)		(8)
	tbooks	dudies on Fower C	quality 1880	168					(4)
1.		ality Problems and	Mitigation	n Techniques h	v Rhim Sing	h Amhrich	ı Chandra, Kamal A	1_Haddad	l· Iohn
1.	Wiley & S		Willigation	n reeminques e	y Dillill Silig	,11, 7 1111011311	Chandra, Kamai 71	.1-11addac	ı, John
2.		Power System Qua	ality by Ro	nger C Dugan	3 rd Ed 2012	McGraw	Hill		
3.	Electric Po	ower Quality by G.	T Heydt: 2	2 nd Ed Stars in	n a Circle Pul	blications	11111		
	erence Boo	- · ·	j di, 2			2.104410110			
1.			Suraiit Cha	attopadhyay. N	Iadhuchhand	laMitra. Sa	marjitSengupta; Sp	ringer D	ordrecht
		g London New Yor		accopacity ay, 1.		, 50	marjina engapia, ap		310100110
2.				esfor Trouble-s	hooters by F	Porter, Gres	gory J., Van Sciver,	J. Andro	ew; The
	Fairmont I	•	-		•	,			Í
3.		tem Quality Asses	sment by J	J. Arrillaga, N.	R. Watson; 3	3 rd Ed., Joh	n Willey & Sons		
-	ful Links		· ·						
1.	https://npte	el.ac.in/courses/10	8/102/108	102179/	(Prof Bhim	Singh – II	Γ Delhi)		
		el.ac.in/courses/10			_				
2.	nups://npu	21.ac.111/Courses/10	<u>0/10/</u> /100.	10/13//	(FIOI AVIKU	<u>matta</u> chary	a – IIT Roorkee)		

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering Elective V- EE 2843: Power Quality & Harmonics

Mapping of COs and POs Course Outcomes (CO)

Students will be able to

- **1.** Understand the different power quality indices.
- 2. Interpret the ill effects of all power quality problems in power system.
- 3. Solve wiring and grounding problems.
- **4.** Analyse harmonics and filters in power system.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	3	2	2	2	2	1					2	1
CO 2	3	2	3	2	2	3	1					2	1
CO 3	3	2	2	2	3	2	1					2	
CO 4	2	2	2	2	2	1	1					2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	ı	-	-	-
Understand	1	-	-	-
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create	-	-	-	-
TOTAL	15	15	10	60

Government College of Engineering, Karad									
	Final Year (Sem. – VIII) B. Tech. Electrical Engineering								
	EE2804: Embedded System Lab								
Teaching Schen	me						Examination Sch	eme	
Lectures							CT – 1		
Tutorials							CT – 2		
Practicals	02Hrs/week						CA	25	
Total Credits	01						ESE	50	
0 1	(00)						Duration of ESE	3 hrs.	
Course Outcon									
Student will be a			4:	٠	Deskari	Idad Caretana			
	and interpret various			locois in	Embec	ided Systems).		
	ardware configurati test and debug code								
	knowledge of Emb				1 Embo	ddad a nnl iga	tions		
4. Apply the	Kilowiedge of Eillo	edded Syste	ills to bu		iments	dued applica	uons.		
Experiment 1	To write embedde	d C progran	n for inte			Segment disp	lay with LPC 21XX	7	
Experiment 2	To write embedde						•	Δ.	
Experiment 3	To write embedde								
Experiment 3 Experiment 4	To write embedde								
Experiment 4 Experiment 5	To write embedde								
Experiment 5 Experiment 6				macing	Keyboa	iiu wiiii LFC	21ΛΛ		
	Experiment 7 I2C EEPROM interfacing with LPC 21XX								
Experiment 8	RTC interfacing v			13737					
Experiment 9	Stepper Motor int			1XX					
Experiment 10	Experiment 10 Zigbee interfacing with LPC 21XX.								

Government College of Engineering, Karad Final Year (Sem – VIII) B. Tech. Electrical Engineering EE2804: Embedded System Lab

Mapping of COs and POs

Course	Course Outcomes (CO)						
Studen	Student will be able to						
1.	. Analyse and interpret various communication protocols in Embedded Systems.						
2.	Identify hardware configuration of LPC21XX						
3.	3. Program, test and debug code using Keil software.						
4.	4. Apply the knowledge of Embedded Systems to build small Embedded applications.						

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					2	3
CO 4	2	2	2	1	1	1							3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

Government College of Engineering, Karad										
	Final Year (Sem. –VIII) B. Tech. Electrical Engineering									
	EE 2815: FACTS Lab									
-										
	hing Scheme	1		Examination Sch	ieme					
Lecti				CT - 1						
Tuto Pract		02 Hrs/week		CT – 2	25					
	Credits	01		ESE	50					
10ta	Cledits	01		Duration of ESE	3 hrs					
Com	rse Outcomes	(CO)		Daration of ESE	5 1115					
	ent will be abl	\ /								
1.	Apply FACT	S controllers for read	ctive power compensation using.							
2.		es and shunt compen								
3.		per selection of FAC								
4.	Create MAT	LAB/Scilab simulation			r					
	1		Experiments							
			ng MATLAB/ Scilabsimulationfrom List gi	ven below						
			or VAR compensation							
		•	r VAR compensation							
			R for VAR compensation							
		<u> </u>	CR for VAR compensation							
			COM for VAR compensation							
			and STATCOM combination for VAR	compensation						
		<u> </u>	C for VAR compensation							
			for VAR compensation							
			for VAR compensation							
			for VAR compensation							
	11 . Ap	plication of UPFC	for VAR compensation							

Government College of Engineering, Karad
Final Year (Sem. – VIII) B. Tech. Electrical Engineering
EE2815 : FACTS Lab

Mapping of COs and POs

ւրիու	ig of COs and 1 Os					
Co	Course Outcomes (CO)					
St	udent will be able to					
1.	Apply FACTS controllers for reactive power compensation using.					
2.	Evaluate series and shunt compensators applications.					
3.	Analyse proper selection of FACTS controller.					
4.	Create MATLAB simulations.					

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2	1					
CO 2	3	2	2	1	2	3		1				2	
CO 3	3	1	1	2	3	2	1		1	2		2	2
CO 4	2	2	2	1	1	1		2	3	2		2	2

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			5	5
Analyse			10	10
Evaluate			5	5
Create			5	5
TOTAL			25	25

	Go	vernment College of Engineering, Karad					
	Final	Year (Sem. – VIII) B. Tech. Electrical Er	ngineering				
	EE2	25: Electric and Hybrid Vehicles Lab					
Teaching Schen	ne		Examination Sch	eme			
Lectures			CT – 1				
Tutorials			CT – 2				
Practicals	02 Hrs/week		CA	25			
Total Credits	01		ESE	25			
			Duration of ESE	3 hrs			
Course Outcom							
Student will be a							
		various electric drives for electric vehicle applie					
		c & hybrid vehicle fundamentals for practical in					
		els of energy management & battery charging	g/discharging-SOC	C, for electric	c &		
	nicle application using						
4. Develop/C	Create Simulation mod	els of electric drives for electric & hybrid vehic	le application usin	g MATLAB			
		Experiments					
Experiment 1		ess d.c. motor drive for EV application, using M					
Experiment 2		on motor drive for EV application, using MAT					
Experiment 3		nent magnet synchronous motor drive for EV ap	oplication, using				
	MATLAB.						
Experiment 4		otor drive for EV application, using MATLAB.					
Experiment 5		ed reluctance motor drive for EV application, us	sing MATLAB.				
Experiment 6	Simulation of battery	operated electric vehicle using MATLAB.					
Experiment 7	0.	management for EV application, using MATL					
Experiment 8	Simulation of battery	chaging/discharging-SOC, characteristics for E	EV application usi	ng			
	MATLAB.						
Experiment 9	Simulation of regene	rative braking for EV application, using MATL	AB.				
Experiment 10	Simulation of speed	control of different motors for EV application, u	ising MATLAB.				

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE2825: Electric and Hybrid Vehicles Lab

Mapping of COs and POs

Co	ourse Outcomes (CO)
Stu	ident will be able to
1.	Impliment and Demonstrate the various electric drives for electric vehicle application.
2.	Comprehend the basics of electric & hybrid vehicle fundamentals for practical implementation using MATLAB.
3.	Develop/Create Simulation models of energy management & battery charging/discharging-SOC, for electric &
	hybrid vehicle application using MATLAB.
4.	Develop/Create Simulation models of electric drives for electric & hybrid vehicle application using MATLAB.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					2	3
CO 4	2	2	2	1	1	1							3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

		G	Government	College of Engineering, Kara	ad		
		Final Y	ear (Sem. –	VIII) B. Tech. Electrical Eng	ineering		
			EE 2835 : A	Advanced Control System Lal)		
Tea	ching Scher	ne			Examination Sch	eme	
Lect	ures				CT-1		
Tuto	orials				CT-2		
Prac	ticals	02Hrs/week			CA	25	
Tota	l Credits	01			ESE	25	
					Duration of ESE	3 hrs	
Cou	rse Outcom	nes (CO)					
Stud	ent will be a	able to					
1.	Implemen	t advanced controlle	er in simulation	on			
2.	Implemen	t advanced controlle	er in experime	ent using RTI			
			_	Experiments			
Exp	eriment 1	To implement con-	troller using	feedback linearization in simulation	on		
Exp	periment 2	To implement FOS					
Exp	periment 3	To Implement SOS	SMC in simu	lation			
Ext	periment 4	To implement Obs	server in simu	ılation			
_	periment 5	To validate control					
_	periment 6	To validate observ					
	Note			ent practical systems (Buck Conv	erter Boost Converte	er	
	1,500	<u> </u>		system, Coupled tank system, etc)		,	
		11.121.11.110to1, IIIG		system, esupres tame system, etc)			

Government College of Engineering, Karad
Final Year (Sem. – VIII) B. Tech. Electrical Engineering
EE 2835 : Advanced Control System Lab

Mapping of COs and POs

Cou	Course Outcomes (CO)							
Stuc	Student will be able to							
1.	Implement advanced controller in simulation							
2.	Implement advanced controller in experiment using RTI							

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1
CO↓													
CO 1	2	2	2	1	3							1	1
CO 2	2	2	0	1	3							1	1

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

	T	Government College of		•						
		Year (Sem. – VIII) B. To		ring						
	<u> </u>	EE 2845 : Power Quality	ty & Harmonics Lab							
Teaching Sche	me	<u> </u>		Examination Sch	neme					
Lectures				CT – 1	-					
Tutorials				CT – 2	_					
Practical	02 Hrs/week			CA	25					
Total Credits	01			ESE	50					
				Duration of ESE	3 hrs					
Course Outcor	nes (CO)		<u> </u>							
Student will be	able to									
	Power Quality problem	ems using PQ monitoring	instruments.							
		ems using PQ monitoring	instruments.							
3. Evaluate	PQ problems with si									
			periments							
Experiment 1		ar loads on power quality.								
Experiment 2		age and current distortion /								
Experiment 3		age and current distortion /		ntal / simulation b	ased)					
Experiment 4		neutral current. (experimen	ntal / simulation based)							
Experiment 5		mitigation of harmonics.								
Experiment 6		on of voltage quality.								
Experiment 7	UPQC for mitigat									
Experiment 8	Mitigation of harr	nonics using filters. (active	e, passive, hybrid)							
	List of ex	periments for reference.								
	Minimum	Minimum 05 experiments / simulations based on contents in theory course to be								
	designed	designed and executed.								
	• At least 0	At least 01 case study based on industrial / commercial / domestic problems.								
		periments performed / sin	· ·	ry hrs and/or ora	l examination t					
check the ability	y of the students to a	nalyse and evaluate the P	ower Quality issues.							

Government College of Engineering, Karad Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE 2845: Power Quality & Harmonics Lab

Mapping of COs and POs

14	Tapping	3 of COS and TOS							
	Course	Course Outcomes (CO)							
	Student will be able to								
	1.	Monitor Power Quality problems using PQ monitoring instruments.							
	2.	Analyse Power Quality problems using PQ monitoring instruments.							
	3.	Evaluate PQ problems with suitable solution.							

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	1	-	-	2	-	1	2	-	-	-	-	-
CO 2	1	2	-	-	-		-	2	-	-	2	-	-
CO 3	2	2	-	1	-	1	-	3	-	-	-	-	3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember	1	1	1	-
Understand	-	-	-	-
Apply	-	-	10	10
Analyse	-	-	10	10
Evaluate	ı	ı	5	5
Create	-	-	-	-
TOTAL	-	-	25	25

					ngineering, Kara				
		Fina			. Electrical Eng	ineering			
			EE 280	06: Project (Aca	demic Mode)				
Teachin	g Sche					Examination Sch	eme		
Lectures		00				ISA– I			
Tutorials		14 Hrs./wek				ISA-II			
Total Cr	edits	07				TA	50		
						ESE	150		
						Duration of ESE	03 Hrs		
		nes (CO)							
Students									
			rough literature	and market surve	y; sight visits; inte	raction with commu	ınity or iı	ndusti	ry,
		omic survey etc.							
	-	<u> </u>			s using multidiscip	olinary knowledge			
				nd measurement n					
4. Eval	uate de	eployment, imple	ementation and	demonstration of					
				Course Cont				Hou	irs
	1	. Conceptualiza	ation of project	theme (during wir	nter vacation)				
	2	. Learning state-	of-the-art relate	ed to project idea t	through literaturer	eview /survey/			
	visits	interactions (2 v	veeks)						
	3	B. Designing of p	roject theme an	nd selection of con	nponents (2weeks)			
	4	l. Procurement o	f components (1week)					
	5	5. Assembly and	Fabrication of 1	project work (3 we	eeks)				
	ć	6. Testing and mo	odifications (2	weeks)					
	7	7. Report writing	and conference	e ready paper base	d on project work	(2 weeks)			
	8	3. Presenting pro	ject in front of	departmental com	mittee.				
	ç	9. Submission of	hard bound pro	oject report copy.					

Government College of Engineering, Karad

Final Year (Sem – VIII) B. Tech. Electrical Engineering

EE 2806: Project (Academic Mode)

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

- **1.** Evaluate innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc.
- 2. Analysis and design product, processes, methods and systems using multidisciplinary knowledge
- **3.** Create product, development of software and measurement methods
- 4. Evaluate deployment, implementation and demonstration of project in group

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO ↓													1
CO 1	3	1	1	3	2	3	2	2	3	3	1	3	1
CO 2	2	2	2	3	3	2	3	3	3	2	3	3	2
CO 3	3	3	3	3	3	3	2	2	3	2	3	3	1
CO 4	3	2	3	2	3	3	1	3	3	3	3	3	

Knowledge Level	ISA-I	ISA-II	TA	ESE
Remember				
Understand	10			50
Apply	10	10	20	
Analyse	20	10	10	50
Evaluate	10	10	10	50
Create	0	20	10	
TOTAL	50	50	50	150

Government College of Engineering, Karad										
Final Year (Sem. – VIII) B. Tech. Electrical Engineering										
EE 2809: Project (Industry Mode)										
Teaching Scheme Examination Scheme										
Lectures	00		ISA– I	75						
Practical	All Hrs/week		ISA-II	75						
Total Cred	lits 12		TA	100						
	ESE 300									
	Duration of ESE 02 Hrs									
Course Outcomes (CO)										
Students v	vill be able to									
1. Comn	nunicate and familian	ise with industry community.								
2. Apply	theoretical knowled	ge to select project in industry.								
3. Evaluate problem statement.										
4. Create	and design project i	n industry.								
Course Contents										
The scope, objectives and time frame of industry project will be decided by concerned internal guide										
and industry expert in tune with the academic requirements of the institute.										
The candidate pursuing industry project should maintain the work diary and present it to internal										
guide after every fortnight. The student has to present project work in front of departmental										
committee and submit hard bound project report.										

Government College of Engineering, Karad

Final Year (Sem. – VIII) B. Tech. Electrical Engineering EE 2809: Project (Industry Mode)

Mapping of COs and POs Course Outcomes (CO)

Students will be able to

- 1. Communicate and familiarise with industry community.
- 2. Apply theoretical knowledge to select project in industry.
- 3. Evaluate problem statement.
- 4. Create and design project in industry.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	3	1	1		1		3	2	3	1	3	
CO 2	2	2	1	3	3	2	3	3	2	2	3	3	3
CO 3	3	3	3	3	3	3	2	1	3	3	3	3	2
CO 4	3	3	3	2	3	2	2	3	3	3	3	3	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply			50	100
Analyse			50	100
Evaluate			50	100
Create			100	
TOTAL			250	300