Electrical Engineering Department Government College of Engineering, Karad

Curriculum for TY Electrical from Academic Year 2021-22

Institute Vision

To emerge as a technical Institute of national repute driven by excellence in imparting value based education and innovation in research to face the Global needs of profession

Institute Mission

To <u>create</u> professionally competent engineers <u>driven</u> with the sense of responsibility towards <u>nature</u> <u>and society</u>

Department Vision

To produce Electrical Engineers to meet the requirements of Industry with *professional, ethical* and *social* responsibility

Department Mission

To impart *quality* education in Electrical Engineering

To upgrade curriculum continuously to meet the industrial requirements

To develop ability to research, *innovation* and entrepreneurship

To promote *awareness* about social and ethical responsibility

Program Educational Objectives

	Student will have a sound foundation of mathematical, scientific and engineering
PEO 1	fundamentals necessary to formulate, solve and analyse engineering problems and
	to <i>prepare</i> them for <i>graduate studies</i> as well as <i>research</i> and <i>innovation</i>
	Student will have an excellent <i>academic ambience</i> of collaborative learning which
PEO 2	will help them to assimilate difficult theoretical concepts through modelling,
	simulation, well designed laboratory sessions, industrial training etc. by using
	modern tools.
	Employability of students will be enhanced by continually upgrading the curricula
PEO 3	to <u>satisfy</u> dynamic <u>industry</u> requirements in tune with the state-of-the-art <u>scientific</u>
	and technological developments and entrepreneurship skills will be inculcated
	Students will demonstrate professional, <i>ethical</i> attitude and ability to relate
PEO 4	engineering issues to broader environmental and social context through life-long
	learning

Program Outcomes (POs)

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOME (PSO)

Design solution for power system problems using appropriate tool and design power apparatus that meet specific needs with appropriate consideration to its social impact

Government College of Engineering, Karad SCHEME OF INSTRUCTION & SYLLABI

Programme: Electrical Engineering

Scheme of Instructions: Third Year B. Tech. in Electrical Engineering

Semester - V

Sr.	Course	Course	Course Title	L	Т	Р	Contact	Course		EX	AM SCH	EME	
No.	Category	Code					Hrs/Wk	Credits	CT-1	CT-2	TA/CA	ESE	TOTAL
1	OEC	EE2501	Microcontroller	3	-	-	3	3	15	15	10	60	100
2	PCC	EE2502	Electrical Machines II	3	-	-	3	3	15	15	10	60	100
3	PCC	EE2503	Power Systems II	3	-	-	3	3	15	15	10	60	100
4	PCC	EE2504	Control Systems	3	-	-	3	3	15	15	10	60	100
5	PEC	EE25*5	Elective – I	3	-	-	3	3	15	15	10	60	100
6	OEC	EE2506	Microcontroller Lab	-	-	2	2	1	-	-	25	25	50
7	PCC	EE2507	Electrical Machines II Lab	-	-	2	2	1	-	-	25	25	50
8	PCC	EE2508	Power Systems II Lab	-	-	2	2	1	-	-	25	25	50
9	PCC	EE2509	Software Lab-II	-	-	2	2	1			25	25	50
10	P/S/IT	EE2510	Mini Project	-	-	2	2	1	-	-	25	25	50
11	P/S/IT	EE2511	Technical Training & Technical Presentation	-	1	-	1	1			50		50
			Total	15	01	10	26	21	75	75	225	425	800
	T-Tuto			Assessment/	P-Practical								

CT1- Class Test 1 TA/CA- Teacher Assessment/Continuous Assessment

CT2- Class Test 2

ESE- End Semester Examination (For Laboratory End Semester performance)

Course Category	HSMC (Hum., Soc. Sc, Mgmt.)	BSC (Basic Sc.)	ESC (Engg. Sc.)	PCC (Programme Core courses)	PEC (Programme Elective courses)	OEC (Open Elective courses from other discipline)	MCC (Mandatory Courses)	Project / Seminar / Industrial Training
Credits				12	03	04		02
Cumulative Sum	06	22	27	29	03	08	Yes	03

PROGRESSIVE TOTAL CREDITS :77+21= 98

Government College of Engineering, Karad SCHEME OF INSTRUCTION & SYLLABI

Programme: Electrical Engineering

Scheme of Instructions: Third Year B. Tech. in Electrical Engineering

Semester - VI

Sr.	Course	Course		Course	Title	L	Т	Р	Contact	Course		EX	AM SCH	EME	
No.	Category	Code							Hrs / Wk	Credits	CT-1	CT-2	TA/CA	ESE	TOTAL
1	HSMC	EE2601	Econ	omics for E	Ingineers	3	-	-	3	3	15	15	10	60	100
2	OEC	EE2602	Inter	net of Thing	gs	3	-	-	3	3	15	15	10	60	100
3	PEC	EE26*3	Elect	ive – II		3	-	-	3	3	15	15	10	60	100
4	PCC	EE2604	Powe	er Electroni	cs	3	-	-	3	3	15	15	10	60	100
5	PCC	EE2605	Elect	rical Machi	ne Design	3	-	-	3	3	15	15	10	60	100
6	OEC	EE2606	Inter	net of Thing	gs Lab	-	-	2	2	1	-	-	25	25	50
7	PCC	EE2607	Powe	er Electroni	cs Lab	-	-	2	2	1	-	-	25	25	50
8	PCC	EE2608		rical Machi	ne Design	-	-	2	2	1	-	-	50	50	100
			Lab												
9	PCC	EE2609	Elect	rical Works	shop Lab	-	-	2	2	1			25	25	50
10	HSMC	EE2610	Tech	nical Presei	ntation		1		1	1	-	-	50	-	50
			Tota	1		15	01	08	24	20	75	75	225	425	800
			L-Le	ecture		T-Tut	orial		Р	-Practical					
			CT1	- Class Tes	t 1	TA/C	A- Te	acher A	Assessment/C	Continuous	Assessm	nent			
			CT2	- Class Tes	t 2	ESE-	End S	emeste	er Examinatio	on (For Lab	oratory	End Sem	ester perfo	ormance)
Co	urse Category	HSMC (H	lum.,	BSC	ESC	PCC (Pr	ogramm	e PI	EC (Programme	OEC (MCC (Ma	Iandatory Project / Set		
		Soc. Sc, M	gmt.)	(Basic Sc.)	(Engg.	Core c	ourses)	E	lective courses)	Elective		Cour	ses)	Industrial	Training
					Sc.)					from o discip					
	Credits	04				0	9		03	04	1			-	-

PROGRESSIVE TOTAL CREDITS :98+20=118

10

Cumulative Sum

22

27

38

06

12

Yes

03

List of Electives to be offered for V and VI Semester

Verticals	Advanced Po	Advanced Power System		ectrical Modelling	Industrial C Atomization		Energy & Utilization		
Elective – I	EE 2515	EHVAC Transmission	EE 2525	Electromagnetics	EE 2535	Optimization Techniques	EE2545	Electrical Utilization and Traction	
Elective – II	EE2613	HVDC Transmission	EE2623	Network Synthesis	EE2633	Digital Control System	EE2643	Renewable Energy Sources	

			Government College of I					
		Th	ird Year (Sem. – V) B. Tecl	h. Elect	rical Engii	neering		
			EE2501: Micro	control	ler			
Teac	hing §	Scheme				Examination	Scheme	
Lectu		03Hrs/week				CT – 1	15	
Tutor						CT – 2	15	
Total	Credi	its 03				ТА	10	
						ESE	60	
						Duration of E	SE 02 Hrs	30 Min
		tcomes (CO)						
		ill be able to	nonforme the test					
<u> </u>		Develop algorithm to	perform the task ripherals to develop digital syste					
<u> </u>			controller for given application a		am it			
<u> </u>			uitable microcontroller based sy	<u> </u>		cation		
т.			Course Co		Siven uppn	cation		Hours
Unit	1 C	Overview of Microc						(8)
	C	Overview of microco	mputer systems and their building	ng blocks	s, memory i	nterfacing, con	cepts of	
			Memory Access, instruction set	s of micr	oprocessors	(with example	s of 8085	
		nd 8086);						
Unit		nterfacing with per	-	A 1.1	. A	c .		(8)
			llel I/O, A/D and D/Aconverters	s; Arithm	ietic Coproc	essors; System	level	
Unit		nterfacing design Iemory:						(4)
Omt		-	emory, Cache memory, Advanc	ced copro	cessorArch	itectures- 286.	486.	(-)
		entium; Microcontro	•	or copro	•••••••	200,	,	
Unit		RISC processors:	2					(7)
		ntroduction to RISC	1					
Unit			c Controllers (PLCs):					(6)
		RM microcontroller						
Unit		Arduino:Programmin lectrical measurement	ng and architecture. Interfacin	ig with s	sensors and	network. App	plications to	(7)
	e.	lectrical measurement	nts and control.					
Text	Book	g						
			cessor Architecture: Programmi	ng and A	pplications	with the		
		· 1	ernational Publishing, 1996					
			essors Interfacing", Tata McGra	aw Hill, 1	.991.			
3.		Pottorson and IU Ua	nnessy, "Computer Organization	n and Da	ion The her	rdwara		
			organ Kaufman Publishers		sign The na	luwale		
		Books						
			controllers: MCS51 family and i	its varian	ts", Oxford	University Pre	ss.	
2.		ta Ghoshal, "8051	Microcontroller: Internals, 1					Pearson
			vi, "The 8051 Microcontrollers:	Archite	ture Progr	amming and A	nnlications"	Pearson
	K Offi Educa					anning and A	ppiloanons,	1 001 5011
	ul Lin							
			Vebcourse-contents/IITKANPU	R/micro	controllers/	micro/ui/TOC.	htm	
			m/Course/3018/Microprocessor					

Government College of Engineering, Karad Third Year (Sem. – V) B. Tech. Electrical Engineering EE2501: Microcontroller

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

1. Develop algorithm to perform the task

Select appropriate peripherals to develop digital system
 Select suitable microcontroller for given application and program it

4. Design and develop suitable microcontroller based system for given application

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	3	2	3	1	2	3	1					2	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate				
Create	5	5	4	20
TOTAL	15	15	10	60

			Government Coll	ege of Enginee	ring, Kara	ıd		
		Th	ird Year (Sem. – V)	B. Tech. Elect	rical Engi			
			EE 2502 : E	lectrical Mach	ines-II			
Tooob	ing Sche	m 0				Examination Sch	0000	
Lecture		03Hrs/week				CT – 1	15	
Tutoria						CT - 2	15	
Total C		03				TA	10	
						ESE	60	
						Duration of ESE	02 Hrs	30 Min
		nes (CO)	·					
	ts will be							
1.			ts with the concept of A					
2.			d foundation in Electric			ytical skills and		
2		A	ding of analytical meth					
3.	10 m	ake students awa	are of protective system	urse Contents	iemeu iearn	ing.		Hours
Unit 1	Const	ruction & types	s of 3 ph. Induction m		lation start	ing foralle running	torque	(6)
Unit 1		¥ 1	m torque ,torque slip					(0)
			ters, Speed control m			1		
			ole changing) & rotor					
		tion motors.						
Unit 2		•	of 3 phase induction m		•			(7)
			test, equivalent circuit	•		e	•	
			ormance of 3 phase ind	luction motor using	ng circle dia	igram, Cogging & c	crawling	
Unit 3		hase induction i	notor. Ig and types of single 1	abasa induction r	notora (Snli	t phase conscitors	tort/run	(6)
Unit 5			Double field revolving	•	· .		lait/iuii,	(0)
Unit 4			le of operation of three				rmature	(7)
		· ·	eaction, concept of	•				~ /
			3 phase alternator, alter					
Unit 5			3 Phase alternator, sh					(7)
			nd direct loading meth					
			need of parallel open nd oscillations in altern		for paralle	el operation, synch	ronizing	
Unit 6			starting methods, Phas		act of excit	ation on nower fa	ator and	(7)
Omtu	-		and inverted V Curv	0		-		(7)
			ons of three phase sync		b y nem one	us motor us syne	monous	
			achines, Principle, oper		ations of Bru	ushless motors		
Text B	ooks							
1. "]	Electrical	Machines", S.	K. Bhattacharya, 3 rd ed	ition, Tata Mc-G	aw-Hill put	olication.		
-			. Nagrath, D. P. Kothar					
	ence Boo			-, . controll, ruu		pueneution		
			E. Fitzgerald, Mc-Graw	Hill publications	5	1		1
			, A. S. Langsdorf, Mc-0			<u>_</u>		
3. "1	Design of	f Brushless Perr	nanent Magnet motors,	·		E. Miller, Magna P	hysics Pu	blishing
		don press. 1994						_
		Permanent Ma	gnet Motor Design", D	uane C. Hanselma	an, McGraw	- Hill Inc.		
	Links		~					
1. w	ww.npte	l.iitm.ac.in (Vid	eo Courses on Electrica	al Machines by Pr	of. S K Bha	attacharya, IIT Khai	agapur)	

Government College of Engineering, Karad Third Year (Sem.-V) B. Tech. Electrical Engineering **EE 2502 : Electrical Machines-II**

Mapping of COs and POs Course Outcomes (CO)

Students will be able to

1. To familiarize students with the concept of AC machines and their industrial applications

2. To set a firm and solid foundation in Electrical machines with strong analytical skills and

Conceptual understanding of analytical methods in A.C. Machines.

To make students aware of protective system with industry oriented learning. 3.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

			Government College	of Engine	ering, Kara	ad		
		T	hird Year (Sem –V) B. T	ech. Electi	rical Engin	eering		
			EE2503 : Pov	ver Systen	n-II			
Teac	hing S	cheme				Examination Sch	eme	
Lectu	ures	03Hrs/week				CT – 1	15	
Tuto	rials	00Hrs/week				CT – 2	15	
Total	Credit	ts 03				ТА	10	
						ESE	60	
						Duration of ESE	02 Hrs	30 Min
Cour	rse Ou	tcomes (CO)						
		ll be able to						
1.	0	btain the power flow	w solution of an interconnect	ed power sy	/stem.			
2.			em network under symmetrie			fault conditions.		
3.			stem stability and factors aff					
4.		<u> </u>	and economic advantages of	-				
			b b	Contents				Hours
Unit	:1 L	oad Flow Analysis:						(6)
		2	ire of a power system and its	s componen	ts. Analysis	of power flows: Fo	ormation	(-)
			Matrix. Real and reactive					
			ions. Application of numer					
			Seidel and Newton-Raphso					
			onal Issues in Large-scale Po			indiana or the post	01 110 11	
Unit		*	nents and Sequence Netwo					(6)
Cint			nmetrical phasor from the		trical com	onents The sym	metrical	(0)
			nmetrical phasor, Power in					
			nd transformers in sequence					
Unit		ymmetrical Fault:	le transformers in sequence		msymmetre	ui series impedance		(6)
Cint			cation, Severity and occurrent	nce of fault	Effect of fa	ults Balanced three	nhase	(0)
			insmission line, Short circuit			ans, Bulancea anee	phase	
Unit		nsymmetrical Faul						(6)
			s on power systems, Single I	Line to grou	nd. Line to	line. Double line to	ground	
			e conductor open faults.		,		8	
Unit		ower System Stabi						(6)
01110			chronous machine, Power a	ingle equati	on. Steady	state stability. Equ	ual area	(0)
		••••	plication, M and H consta	•	•			
		earance angle.					ciintui	
Unit		VDC and FACTS:						(6)
0			hronous and synchronous 1	inks. limita	tions and a	dvantages of HVD	C links.	(0)
			of FACTS and types of FAC			8	,	
Text	Books							
			, Grainger John J and W D S	tevenson Jr	Mc-Graw F	Iill, 2003 Edition		1
			nalysis", I. J. Nagrath, D. P.				ublishino	co.
	Ltd., 2		, 212 , 1. 0. 1 (uBraun, D. 1.		,			, 20.
	rence l							
			nd Design ",J. D. Glover and	M. Sarma(5thEdition)	Brooks/ Cole Publi	shing	1
			heory: An introduction",O. I				5	
		<u> </u>	HadiSaadat,3rdedition, McG	<u> </u>				
			A. R. Bergen and Vijay Vitta				01	
			A. R. Dergen and vijay villa	ai, (2 eaith	on, rearson	Equivalion Asia, 20	101	
	ul Linł				1			
		nptel.iitd.ac.in						
2.	WWW.1	nptel.iitm.ac.in						

E2303

Government College of Engineering, Karad Third Year (Sem –V) B. Tech. Electrical Engineering EE2503 : Power System-II

Mapping of Cos and Pos

Course Outcomes (CO) Students will be able to

1. Obtain the power flow solution of an interconnected power system.

2. Analyse a power system network under symmetrical and unsymmetrical fault conditions.

3. Explain the power system stability and factors affecting on transient stability

4. Discuss the technical and economic advantages of dc systems over ac systems.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	3	3	3	2	1	2	2	2				2	3		
CO 2	3	3	3	2	1	2	2	2				2	3		
CO 3	3	3	3	2	1	2	2	2				2	3		
CO 4	2	2	2	1	1	2	3	3				2	3		

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	4	20
Evaluate	5	5	3	20
Create				
TOTAL	15	15	10	60

							f Enginee						
			Th	ird Yea			ech. Elect	<u> </u>	neering				
-					EE2	504: Cor	ntrol Syste	em					
		0.1		1									
		Scher	ne 03Hrs/week						Examination Sch CT – 1	15			
Lect Tuto									CT = 1 CT = 2	15			
	l Crec	lite	03						TA	10			
1014		1115	03						ESE	60			
									Duration of ESE		30 Min		
Cou	rse O	utcon	nes (CO)						Durunon of LoL	02 1115	2010111		
			able to										
1.		Mode	l and represent t	the physic	cal systems	s mathem	atically. (I)						
2.			ze and formulat	<u> </u>			nd frequenc	y domain.(l	II,III,IV)				
3.		<u> </u>	n the controller	<u> </u>									
4.		Estim	ate the paramete	ers of give	en continu			ng state spa	ce approach.(VI)		1		
						Course					Hours		
Uni			ling and repre			•					(06)		
									liagram representation	on and			
Uni			tion, types of fee					on's gain ru	lle, SFG.		(06)		
UIII			Domain Analy					lor exetom	response with additi	onal	(00)		
									constants and system				
									Absolute and relative				
		•	ty, Routh stabili		-		•	•					
Uni		Root Locus : (00											
]	Defini	tion of root locu	us, Rules	for plottin	ng root loc	i, Root con	tour, stabili	ity analysis using roo	ot locus,			
		effect	of addition of p	ole and z	zero.								
Uni			ency Domain								(08)		
									y domain specificati				
					in, phase n	nargin by	bode plot, I	Effect of ga	in variation and add	ition of			
Uni		.	and zeros on Bo duction to Con		Docian						(10)		
	15		loci method of f		0	· decign I	ead and I a	a compensi	ation indesigns		(10)		
Uni	t 6		variable Analy		controller	ucsign, L		g compensa	ation indesigns.		(08)		
					ate space n	nodel. Dia	gonalizatio	n of State I	Matrix. Solution of s	tate	(00)		
							0		and observability.Po				
		-	nent by state fee		2	5	1	5	5				
Text	t Bool	ks											
1.	"Cor	ntrol S	ystem Enginee	ring", N	orman S. I	Nise , Joh	n willey an	nd Sons, 6t	h Edition, 2015.				
2.			ystem Enginee	ring",I.J	. Nagrath a	and M. G	opal,New	age Interna	tional publication,	5th Editi	on,		
	2014							1			1		
		e Bool		• • • • • • • • • • • • • • • • • • • •	. 1.1	0 (D	· TT 11						
1.									<u>t Ltd, 5th edition.</u>	1.1	0.1		
2.	editio		c Control Syst	tem", Be	enjamin C		rentice H	all of Indi	a Pvt Ltd, Wiley	publicati	ion, 9th		
3.			veteme Dringin	les and I	Design" N	M Ganal	Tata McC.	aw_Hill E	ducation Pvt. Ltd, 4	thedition	2014		
	ul Li		ystems-rintelp	nes anu I	Design , N	vi.oopai,				urcuntion	, 2014.		
1.			el.ac.in/courses/1	108/106/	108106098	8/		I	1				
2.			necourses.nptel.										

Government College of Engineering, Karad Third Year (Sem. – V) B. Tech. Electrical Engineering EE2504: Control System

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

1. Model and represent the physical systems mathematically. (I)

2. Analyse and formulate the given system in time and frequency domain.(II,III,IV)

3. Design the controller for given system.(V)

4. Estimate the parameters of given continuous time system using state space approach.(VI)

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	3	1	3						2		2	3
CO 2	3	3	1	3						2		2	3
CO 3	3	3	3	3						2		2	3
CO 4	3	3	2	3	3					2		3	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	10	5	1	10
Analyse	5	5	2	10
Evaluate		5	3	20
Create			4	20
TOTAL	15	15	10	60

			ELECTI	VE I				
			Government College of	Engineeri	ng, Karad	l		
		Th	ird Year (Sem. – V) B. Tee					
			EE 2515 : Elective I- El	HVAC Tra	ansmissio	n		
Teachin	<u> </u>					Examination Sch		
Lectures		03Hrs/week				$\frac{CT-1}{CT}$	15	
Tutorial						CT-2	15	
Total Cr	redits	03				TA	10	
						ESE Duration of ESE	60 02 Hrs	20 Min
Course	Outcor	nes (CO)				Duration of ESE	02 1115	50 WIII
Students								
1.	1		e transmission line paramete	ers				
2.			of modes of propagation and		cts			
3.			r-voltages and methods of pro					
4.			avelling waves and standing w					
			Course Co					Hours
Unit 1	EHV	AC Systems:						(10)
			VAC Systems-Engineering as	spects & gr	owth in El	IV AC transmissi	on line,	
			s & transferability, Transient s					
	Calcı	lation of Line	& Ground Parameters: Res	sistance, Pov	wer Loss, t	emperature rise;pr	operties	
	of bu	undled conduct	ors, inductance & capacitar	ices, calcul	lations of	sequence inducta	ance &	
			meters for mode of propagatio					
			& corona loss, corona loss					
			ing waves due to the corona lo	ss, audible	noise; coro	na pulses, their gei	neration	
TT			or radio interference fields.	XX 7		C D:0	· · 1	
Unit 2			g Waves & Standing Wa					(6)
			r general case, Standing Wave Response to the sinusoidal ex-					
			refraction of traveling waves.	citation, Lin	le ellergizat	ion with trapped c	narge	
Unit 3			g Protection: Lightning stro	kes to lines	their mec	hanism general pr	inciples	(6)
Omt 5			on problem, Tower footing					(0)
			nt arrestors & their characteris		,	rinestors & pr		
Unit 4	-		V System Covered by Swit		ration: Ov	ver voltages& thei	r types.	(6)
		0	rcuit breakers, Ferro resonanc	01		0		
		gle phase equiva			C			
Unit 5	Powe	r Frequency V	oltage Control & Over Volt	ages: Gene	eralized con	nstants, charging c	currents,	(6)
	-	•	& its use, voltage control,			•	hronous	
	reson	ance in series ca	pacitor compensated line & sta	tic reactive	compensat	ing system.		
Unit 6			tion: Insulation levels, voltag	e withstand	levels of p	rotected equipmen	t &	(6)
		tion co-ordinati	on based on lightning.					
Text B								
			AC Transmission Engineer	ring", New	Age Inter	national Publishe	ers,	r
Referen								
1. Tw	vain Go	onen, "EHVAC	& HVDC Transmission Engg.	& Design",	, John Wil	ey		
Useful	Links							
1. <u>htt</u>	ps://np	tel.ac.in/course	s/117/106/117106034/					
2. <u>htt</u>	ps://np	tel.ac.in/course	s/108108076/					
		tel.ac.in/course						
I	<u> </u>							

Government College of Engineering, KaradThird Year (Sem. – V) B. Tech. Electrical EngineeringEE 2515 : Elective I - EHVAC Transmission

Mapping of COs and POs

Co	ourse Outcomes (CO)
Stu	idents will be able to
1.	Identify and evaluate transmission line parameters
2.	Articulate the concept of modes of propagation and corona effects
3.	Identify causes of over-voltages and methods of protection
4.	Evaluate the effects travelling waves and standing waves

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

				Governn	nent College	e of Engine	ering, Kar	ad		
			Th	ird Year (S	6em. – V) B.	Tech. Elect	trical Engi	ineering		
				EE 25	25 : Elective	e I - Electro	magnetics	5		
Tea	ching	g Sche	me					Examination S	Scheme	
	tures		03Hrs/week					CT – 1	15	
	orials		00Hrs/week					CT – 2	15	
Tota	al Cre	edits	03					ТА	10	
								ESE	60	
								Duration of ES	E 02 Hrs	30 Min
Cou	irse (Outcon	nes (CO)							
Stud	lents	will be	e able to							
1		Apply	/ mathematical t	echniques to	interpret elec	tromagnetic j	ohenomeno	n.		
2		Apply	advanced math	nematical tech	nniques to sol	ve electromag	gnetic probl	ems.		
3		Articu	ulate electromag	netic phenom	nenon and app	oly appropriat	te mathema	tical modelling tec	chniques to	design
			omagnetic syste							
4	·.	Identi	fy sources of err	ror in the solu	<u> </u>					
						e Contents				Hours
Uni	it 1		U			•	1	rical Co-ordinate	•	(8)
				ariables from	n Cartesian to	• Cylindrical	and Spher	ical Coordinate S	ystem and	
			Versa							
Uni	it 2				•		•	Field of Line an		(7)
				x Density, C	Gauss's Law	and Its App	olications, 1	Divergence and I	Divergence	
		Theor								
Uni	it 3							arge and System		(7)
								s and Laplace's	Equations,	
			nt and Current I							
Uni	it 4			•		. .		Stoke's Theorem	•	(7)
			-	and Vector	Magnetic Pot	ential, Maxv	vell's Equat	tions in Steady E	lectric and	
			etic Fields	1.510				m <i>c</i> i	1 01 1	(6)
Uni	it 5					ent Element,	Force and	Torque on a Clos	ed Circuit.	(6)
T I f	4.6		Varying Fields			naaa Daufaa	Diala atuia	Lagar Dialastria		(7)
Uni	11 0							, Lossy Dielectric		(7)
			s, Standing Rati		vector and i	Power Collsie	Jerations. F	Reflection of Unif	orm Plane	
Tor	t Doc		s, standing Kati	0						
1	t Boo		in a Electronic	an atia? W?	Iliana Ilaanti			tion The McCr	are II:11 ad	
1.		-	ing Electroma	ignetic, wi	mam Hayt a	inu J. A. Bl	ick, otnedi	ition, The McGr	aw mill ed	ucation
_		<u>. Ltd.</u>	0 11		O 1 1 11			a 111 oth 1	T 11.1	0 1 1
2.				magnetics",	S.V.Kulka	rniand Ma	tthewN.O.S	Sadiku,6 th Asia	n Edition,	,Oxtord
	Uni	versit	y press India							
3.							1			
1		ce Boo		-						
1.			-		line series,	J A Edmin	ister, 2nd	edition, The T	Tata Mcgra	w Hill
			g company Ltd							
2.			nagnetic Engine	eering", Nat	han Ida, 5th	edition, Tho	mson Lear	ning		1
Heel	C 1 T	inks								
1										
1.	WW		el.iitm.ac.in							
1	WW		el.iitm.ac.in ayam.gov.in/							

Government College of Engineering, KaradThird Year (Sem. – V) B. Tech. Electrical EngineeringEE 2525 : Elective I - Electromagnetics

Mapping of COs and POs

Cour	se Outcomes (CO)
Stude	ents will be able to
1.	Apply mathematical techniques to interpret electromagnetic phenomenon.
2.	Apply advanced mathematical techniques to solve electromagnetic problems.
3.	Articulate electromagnetic phenomenon and apply appropriate mathematical modelling techniques to design
	electromagnetic systems.
4.	Identify sources of error in the solution process.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	3	2	2		1	1	1	1	1		3	3
CO 2	3	3	3	3	1	1	1	1	1	2		3	3
CO 3	2	3	3	3	2	2	2	3	2	2	2	3	3
CO 4	2	2	2	3	2	1	1	2	2	2	1	3	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

				ent College of Engineer				
		Th		em. – V) B. Tech. Electr		<u> </u>		
			EE 2535 : 1	Elective I - Optimization	n Techniqu	ies		<u> </u>
-								
	ching Sch					Examination Sch	1	
Lect		03Hrs/week				$\frac{CT-1}{CT-2}$	15	
Tuto		00Hrs/week				<u>CT - 2</u>	15	
Tota	l Credits	03				TA	10	
						ESE	60 02 Hrs	20 Min
Con	na Outaa					Duration of ESE	02 Hrs	<u>30 Min</u>
	rse Outco ents will b							
<u>1.</u>			es of algorithr	ns for solving various types	s of optimize	tion problems usin	וס	
1.		AB/MATLAB.	es of argorith	is for solving various type.	s of optimize	aton problems ash	18	
2.			nental knowle	dge of Linear Programmin	g and Nonlir	pear Programming	problems	
3.				o formulate and solve real			problems	
4.				ough weighted and constra			lea about	the
		bus direct and ind				is and acquire an a	icu ubout	tiite
				Course Contents				Hour
Uni	t 1 Intro	duction to optim	ization, engin	eering applications of optim	mization, sta	tement of an optim	nization	(8)
				ables, design surface, co				(-)
				tion to MATLAB/SCILAI				
Uni	t 2 Line	ar Programmi	ng Problem					(8)
	Forn	ulation of LPP,	Geometry of	LPP and Graphical Soluti	on of LPP,	Solution of LPP:	Simplex	
				TLAB/SCILAB.				
Uni		ar Programmii						(4)
	-			od, Special Cases in Simpl	le Applicatio	ons, Introduction to)	
		ity Theory, Dual						
Uni				: Single variable Optimiza				(7)
	-		ear programmi	ng with equality constraint	, Nonlinear j	programming KK'I		
T T •		itions	· NT 1'	· · · 1	1.6	1		
Uni				ar programming - unimoda			4	(6)
		n,Region enmina	ation techniqu	es, Fibonacci Method, Gol	den Section	Methods, Interpole	uion	
Uni			duction Net	vork representation ofproje	et critical p	oth ontimum scho	duling	(7)
Um		PM, crashingof p		vork representation orproje	et, effical p	am, optimum sene	uunng	(I)
Text	t Books		noject.					
1.		ring Ontimizatio	on Theory and	Practice", S. S. Rao, 4th]	Edition Ioh	n Wiley		L
2.				es & Application, Affiliate			Delhi	
	erence Bo						, chini	
1.			ing Design". I	Kalyanmoy Deb, 2nd Editio	on. Prentice	Hall of India		·
2.		U	<u> </u>	Iran and K.M. Rogsdeth, 3				
3.				Jain Brothers, New Delhi.	,	-j, 1 cin		
	ul Links		L	,				
		1 • / /	111105000/0	NPTEL COURSE by Prof				2

Government College of Engineering, KaradThird Year (Sem. – V) B. Tech. Electrical EngineeringEE 2535 : Elective I - Optimization Techniques

Mapping of COs and POs

Co	ourse Outcomes (CO)
Stu	adents will be able to
1.	Develop different types of algorithms for solving various types of optimization problems using SCILAB /
	MATLAB.
2.	Enumerate the fundamental knowledge of Linear Programming and Nonlinear Programming problems
3.	Apply knowledge of optimization to formulate and solve real world engineering problems.
4.	Solve a multi-objective problem through weighted and constrained methods and acquire an idea about the various
	direct and indirect search methods.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	1	1	1	1						1	1	3
CO 2	3	1		1	1							2	3
CO 3	2	1	1	1	1		2				1	1	3
CO 4	3	2	1	1								1	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	4	20
Analyse	5	5	3	20
Evaluate	5	5	3	20
Create				
TOTAL	15	15	10	60

			Government	College of Engin	eering, Kara	ad		
		Th	ird Year (Sem	- V) B. Tech. Ele	ctrical Engi	neering		
		EE	2545 : Elective	I- Electrical Util	zation and T	Fraction		
Teachin	ng Schen	ne				Examination Sch	eme	
Lectures	8	03Hrs/week				CT – 1	15	
Tutorial	s					CT – 2	15	
Total Cr	redits	03				ТА	10	
						ESE	60	
						Duration of ESE	02 Hrs	30 Min
Course								
Students	1							
1.				particular industria	l application.			
2.			nes for indoor and o					
3.				nergy consumption	by means of s	speed-time curves.		
4.	analys	e the performar	nce parameters of t	he traction system.				
				Course Contents	6			Hours
Unit 1			n of Electric Moto					(8)
						l matching of speed		
			-	e		g condition of the l		
						of electric motors in	n textile	
				efrigeration and air		limit amitaless an		
						limit switches, pr		
					- contactor, i	relays and solenoid	valves,	
Unit 2		olytic Processe	using these devices	•				(4)
Unit 2		v		ations of electrols	vis _ electron	plating, anodizing,	electro-	(4)
						er supply for electron		
	proces	·	onshing, cleetto	extraction, creetro	idenig, pow	er suppry for elec	lionytic	
Unit 3		nation:						(6)
cinte			nation, laws of illu	mination, measurer	nent of illumir	nation, classification	of light	(0)
						ed for design of ind		
				and floodlighting.		C		
Unit 4		ic Heating and						(8)
	Classif	fication of ele	ectric heating met	hods, resistance h	eating, design	n of heating eleme	ent, arc	
	furnac	es, arc furnaces	s, induction heating	g, high frequency e	ldy current he	ating, dielectric heat	ing.	
						ic welding, electron	n beam	
		-	velding, requireme	nts of good weld, e	lectric welding	g equipment.		
Unit 5		ic Traction-I:					_	(7)
						ed-time curves, cres		
	-	-	-	-	-	hanics of train mo		
					ecific energy	consumption, dead	weight,	
II			nd adhesive weigh	l				(7)
Unit 6		ic Traction-II:		itable motors for t	notion startin	g and speed control	of DC	(7)
						collection system,		
						C track electrificatio		
Text Bo			a system, power st	appry arrangement				
		"Utilization	of Electrical Powe	r and Electric Tra	ction" S K	Kataria and Sons, 1	0 th editio	n 2012
	print 201					ixuunu unu 50115, 1		2012,
Referen	•							
						1		1
1. E. C	Opensha	w Tavlor. "Util	lization of Electric	Energy", Orient L	ongman. Editio	on 1971. Reprint 20	06.	

	2005.			
3.	H. Partab, "Art and Science of Utilization of Electrical Energy", D	hanpatRai a	nd Sons, 2014.	
Use	ful Links			
1.	https://nptel.ac.in/courses/108/105/108105060/			

Government College of Engineering, KaradThird Year (Sem. – V) B. Tech. Electrical EngineeringEE 2545 :Elective I- Electrical Utilization and Traction

Mapping of COs and POs

Cours	e Outcomes (CO)						
Studen	nts will be able to						
1.	select the type and rating of motor for a particular industrial application.						
2.	design lighting schemes for indoor and outdoor lighting.						
3.	analyse the moment of trains and their energy consumption by means of speed-time curves.						
4.	analyse the performance parameters of the traction system.						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

	(Government College of Engineering, Karad						
		d Year (Sem V) B. Tech. Electrical Engineer	ing					
		EE2506: Microcontroller Lab	8					
Teaching Sch	eme	I	Examination Sch	eme				
Lectures	CT - 1							
Tutorial			CT-2					
Practical	02Hrs/week		CA	25				
Total Credits	01		ESE	25				
			Duration of ESE	3 Hrs				
Course Outco	omes (CO)							
Student will be								
		ell as c programs for microcontroller						
	Design delays using t							
		LCD, LED, Keyboard, Stepper motor, DC motor e	tc. with 8051					
		microprocessor and microcontroller						
		List of Experiments						
Experiment 1	a) Write a program	n to add two 8-bit numbers stored in registers or in	nternal/External n	nemory				
•	locations.	-						
	b) Write a progra	am to multiply two 8-bit numbers stored in regist	ters or internal/E	xternal				
	memory locations							
		n to multiply two 16-bit numbers						
Experiment 2		n to add block of data stored in internal/external me						
		am to transfer block of data from internal memor	ry locations to e	xternal				
	memory locations							
		n to sort block of data in ascending or descending o	order					
Experiment 3		n to perform the following.						
		ng P1.2 until it becomes high.						
		omes high write value 45H on P0.						
	3. Sent a high to l	*	C 1 1	c				
	-	nected to P1.7. Write a program to check the status	of switch and pe	rform				
	the following. $1 \text{ if arritch} = 0$	end letter "N" to P2						
	· · · · · · · · · · · · · · · · · · ·	end letter "Y" to P2						
Experiment 4		n to generate 5 KHz pulse waveform of 50% duty c	wele on nin 10 u	ing				
Experiment 4	timer 1 in mode 2		yele on phi 1.0 u	sing				
		n to generate 1 KHz pulse waveform of 70% duty c	vele on nin 1 0 u	sing				
	timer.	in to generate 1 Kinz pulse waveronin of 70% daty e	yele on phi 1.0 u	Sing				
Experiment 5		n for the 8051 to transfer letter "A" serially, continu	uously					
Experiment 5		n to transfer the message "YES" serially. Do this co						
	, i i)51 to receive bytes of data serially, and put them in	•					
Experiment 6								
Experiment 7	Ų							
Experiment 8		nd LCD Displays.						
Experiment 9	Ŭ	voltage and current						
Experiment 1		•						
Experiment 1								
Experiment 12	-							
Experiment 12	² Fracticals of AKI							

Government College of Engineering, Karad
ThirdYear (Sem – V) B. Tech. Electrical Engineering
EE 2506: Microcontroller Lab

Mapping of COs and POs

Cours	Course Outcomes (CO)									
Studen	Student will be able to									
1.	. Write assembly as well as c programs for microcontroller									
2.	Design delays using timers in 8051									
3.	Interface ADC, DAC, LCD, LED, Keyboard, Stepper motor, DC motor etc. with 8051									
4.	Differentiate between microprocessor and microcontroller									

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					2	3
CO 4	2	2	2	1	1	1							3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

		Government College of	^e Engineering, Karad	
		ThirdYear (Sem – V) B. Tee	ch. Electrical Engineering	
		EE 2507: Electrical	Machines-II Lab	
Teachin	a Sahan	20	Examination Sch	0772.0
Lectures			CT – 1	eme
Tutorial			CT = 1 CT = 2	
Practical		02Hrs/week	CA	25
Total Cr		01	ESE	25
			Duration of ESE	3 hrs
Course	Outcom	es (CO)		
Student				
1.		appropriate connections for testing of AC ma		
2.		e conclusions about the performance using o	e	
3.		late regulation and efficiency of single and th	*	
4.	To sele	ect appropriate ACmachines for the application		
F ·	. 1		Experiments	
Experim	ent I	Determination of efficiency & speed regula method		C .
Experir	nent 2	Determination of circle diagram parameter Load &Blocked Rotor Tests.	rs of 3 Phase induction motor by conduct	ing No
Experir	nent 3	Study of starters for 3 Phase induction moto	Drs.	
Experir		Speed control methods of 3 Ph.IM. (Stator S		
Experir		Speed control methods of 3 Ph.IM. (Rotor S		
Experir		Determination of efficiency & speed regula		
Experir		Determination of Voltage regulation of an a	<u> </u>	
Experir		Determination of Voltage regulation of an a		
Experir		Determination of Voltage regulation of an a		
Experim		Determination of X_d and X_q of an Alternator		
Experim		Performance of synchronous generator commethods.	, <u>,</u>	
Experin	ent 12	Determination of V and Inverted V curves of	of a synchronous motor.	l
Experin		Determination of efficiency of synchronous		
Experin	ent 14	Determination of efficiency and regulation	of Alternator by direct loading method	

Government College of Engineering, Karad									
ThirdYear (Sem – V) B. Tech. Electrical Engineering									
EE 2507: Electrical Machines-II Lab									

Mapping of COs and POs

Course	e Outcomes (CO)								
Studen	Student will be able to								
1.	1. Make appropriate connections for testing of AC machines								
2.	Deduce conclusions about the performance using obtained readings								
3.	Calculate regulation and efficiency of single and three phase machines								
4.	To select appropriate ACmachines for the application								

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					2	3
CO 4	2	2	2	1	1	1							3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

		(Governmei	nt Co	ollege o	f Engi	neering, Kara	d		
		Third	Year (Sen	n – V	7) B. Te	ech. El	ectrical Engine	eering		
			EE 2	2508:	: Power	· Syster	m-II Lab			
								1		
Teaching Sc	chen	ne						Examination Sch	eme	
Lectures								CT – 1		
Tutorials								CT – 2		
Practical		02Hrs/week						CA	25	
Total Credits	8	01						ESE	25	
								Duration of ESE	3 hrs	
Course Out										
Student will							. 1			
1.		rmulate the Y _{BUS} m								
<u> </u>		onstruct standard po						lues.		
<u> </u>		alyse the faulty sys				of the p	bower system.			
4.	AI	halyse rectifier circu	ints using so	ntwar		f Exper	imonte			
		Perform the expe	rimonts or	n MA						
Experiment	1	Formation of YBU					ETAI soltwart			
Experiment 2		Load Flow Analys		uiss S	Seidel (G	S) Met	hod			
Experiment 3		Load Flow Analys								
Experiment 4		Load Flow Analys								
Experiment 5		LG, LL and 3- Φ f			-					
Experiment 6	б							nected to Infinite B	sus	
Experiment 7	Experiment 7 Single Phase bridge rectifier circuit									
Experiment 8	8	Three Phase bridg	e rectifier ci	ircuit	t					
Experiment 9	9	Analysis of IEEE	6 bus syster	m net	work (U	Jse New	ton Raphson Me	ethod)		
Experiment	10	Analysis of IEEE	14 bus syste	em ne	etwork (Use Fas	st Decoupled Me	thod)		

Government College of Engineering, Karad								
Third Year (Sem – V) B. Tech. Electrical Engineering								
EE 2508: Power System-II Lab								

Mapping of COs and POs

Course	e Outcomes (CO)						
Studen	t will be able to						
1.	1. Formulate the Y _{BUS} matrix for given power system network.						
2.	Construct standard power system network and apply load flow techniques.						
3.	3 Analyse the faulty system for stable operation of the power system						
4.	Analyse rectifier circuits using software tool						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1
CO↓													
CO 1	2	2	2	3	3	1	1	1				2	3
CO 2	2	2	2	3	3	1	1	1				2	2
CO 3	2	2	2	3	3	1	1	1				2	3
CO 4	2	2	2	3	3	1	1	1				2	3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			5	5
Analyse			10	10
Evaluate			10	10
Create				
TOTAL			25	25

		Governmen	t College of Engineering, Karad					
			. – V) B. Tech. Electrical Engine	ering				
		EE	2509: Software Lab- II					
	~ •							
	ching Scheme Examination Scheme							
Lectures Tutorials				$\frac{\text{CT}-1}{\text{CT}-2}$				
Practical		02Hrs/week		$\frac{CI-2}{CA}$	25			
Total Cre	dita	02HIS/week 01		ESE	25			
Total Cit				Duration of ESE	3 hrs			
Course (Jutcom	es (CO)	·	Duration of LSL	5 11 5			
Student v								
1.			ftware and practical implementation of	of the fundamental	ls.			
2.			odels for magnetostatic, electrostatic, e					
	funda	mental electrical engineering de	sign problems.	-				
3.		e models and simulate using PS						
4.			ling renewable sources and interfacing	g software with re	al model data			
	acqui	sition						
<u> </u>			Experiments					
Experime			ed on magnetostatic effect –problem.					
Experim			ed on electrostatic effect –problem.					
Experim			ed on eddy current effect –problem.					
Experim			ed on magnetostatic effect –problem.					
Experim			ed on magneto-transient effect -proble					
Experim			ed on magneto-transient effect -proble					
Experim	ent 7	Design and simulate Speed chack change	racteristics of a brushless dc motor un	nder dc bus voltag	e			
Experim	ent 8	Modelling and analysing photo	voltaic power system.					
Experim			discharging process in an energy stora	age system				
Experim		Modelling and analysis of Win		<i>C</i> ,				
Useful		5						
			rical Equipment and Machines: Finite	Element				
		Analysis (Lectures 11 to 22): https://nptel.ac.in/courses/108/	101/108101167/					
		incps.,, inpressues.iii/ courses/ 100/	101/10010110//		I			

Government College of Engineering, KaradThird Year (Sem – V) B. Tech. Electrical EngineeringEE 2509 : Software Lab - II

Mapping of COs and POs

Cours	e Outcomes (CO)
Studen	ts will be able to
1.	Comprehend the basics of ANSYS software and practical implementation of the fundamentals.
2.	Solve the basic Maxwell 2D & 3D models for magnetostatic, electrostatic, eddy current & transient solvers to
	fundamental electrical engineering design problems.
3.	Create models and simulate using PSIM
4.	Develop real time scenario for Modelling renewable sources and interfacing software with real model data
	acquisition

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	3	3	3							2	3
CO 2	3	3	2	3								1	3
CO 3	3	3	2	3			3					2	3
CO 4	2	2	2	3	2							1	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply			5	5
Analyse			10	10
Evaluate			10	10
Create				
TOTAL			25	25

ThirdYear (Sem –V) B. Tech. Electrical Engineering IEE 2510: Mini Project IEE 2510: Mini Project Teaching Scheme Lectures Tutorials CT - 1 Tutorials CT - 2 Practical 02Hrs/week CA 25 Total Credits 01 ESE 25 Ourse Outcomes (CO) Student will be able to 1. Identify community needs 2. Covert idea into product 3. Demonstrate project model to meet desired result using suitable software and hardware. 4. Improve their presentation skill, communication skill Course Contents Course Contents The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the project batches of the minor project. The aim is also to completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight v				U	e of Engineering, Kara					
Teaching Scheme Examination Scheme Lectures Tutorials Tutorials Practical 02Hrs/week CA 25 Total Credits 01 ESE 25 Total Credits 01 Est 25 Course Outcomes (CO) 5 Student will be able to 1 Identify community needs 2 Covert idea into product 0 3. Demonstrate project model to meet desired result using suitable software and hardware. 4. Improve their presentation skill, communication skill Course Contents Collaborative efforts and communication skills in students. The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The atim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project totsches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but no										
Lectures CT = 1 TutoTials CT - 2 Practical 02Hrs/week CA 25 Total Credits 01 ESE 25 Total Credits 01 Duration of ESE Inr. Course Outcomes (CO) Student will be able to Improve their presentation skill, communication skill Improve their presentation skill, communication skill Improve their presentation skill, communication skills in students. 4. Improve their presentation skill, communication skills in students. The main aim of this course is to demostrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, development of software, measurement methods etc. 4. Deployment, implementation and demonstration of				EE 2510:	Mini Project					
Lectures CT = 1 TutoTials CT - 2 Practical 02Hrs/week CA 25 Total Credits 01 ESE 25 Total Credits 01 Duration of ESE Inr. Course Outcomes (CO) Student will be able to Improve their presentation skill, communication skill Improve their presentation skill, communication skill Improve their presentation skill, communication skills in students. 4. Improve their presentation skill, communication skills in students. The main aim of this course is to demostrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, development of software, measurement methods etc. 4. Deployment, implementation and demonstration of	Tees	hing Cabana				Examination Cal				
Tutorials CT - 2 Practical 02Hrs/week CA 25 Total Credits 01 ESE 25 Duration of ESE 1 hr. Course Outcomes (CO) Duration of ESE 1 hr. Student will be able to 1 Identify community needs 1 Identify community needs 1 2. Covert idea into product 2 Covert idea into product 2 1 3. Demonstrate project model to meet desired result using suitable software and hardware. 4 Improve their presentation skill, communication skill 1 Identify communication skills in students. The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. 1 Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of										
Practical 02Hrs/week CA 25 Total Credits 01 ESE 25 Ourse Outcomes (CO) Duration of ESE 1 hr. Student will be able to 1 Identify community needs 2 2. Covert idea into product 3 Demonstrate project model to meet desired result using suitable software and hardware. 1 4. Improve their presentation skill, communication skill Course Contents 1 The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, processes, methods and systems using multidisciplinary knowledge 3. Fabrication of projuct, development of software, measurement methods etc. 4. Deployment, implementation and demonstration of project, every project batch shall receive funding from institute wi										
Total Credits 01 ESE 25 Course Outcomes (CO) Student will be able to 1 hr. 1. Identify community needs 2. 2. Covert idea into product 3. 3. Demonstrate project model to meet desired result using suitable software and hardware. 4. 4. Improve their presentation skill, communication skill Course Contents The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but not limited to: 1. 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, processes, methods and systems using multidisciplinary knowledge 3. Fabrication of project 4. Deployment, implementation and demonstration of project, every project batch shal										
Course Outcomes (CO) Student will be able to 1. Identify community needs 2. Covert idea into product 3. Demonstrate project model to meet desired result using suitable software and hardware. 4. Improve their presentation skill, communication skill Course Contents The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of product, development of software, measurement methods etc. 2. Design of product, processes, methods and systems using multidisciplinary knowledge 3. Fabrication of project (For purchase of consumables required for completion of project, every project batch shall receive funding from institute with maximum limit decided by BOM) List of Submission 1 Working model of the project 2 Project Report 3 Presentation and demonstration of project in exhibition <										
Student will be able to 1. Identify community needs 2. Covert idea into product 3. Demonstrate project model to meet desired result using suitable software and hardware. 4. Improve their presentation skill, communication skill Course Contents The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, processes, methods and systems using multidisciplinary knowledge 3. Fabrication of product, development of software, measurement methods etc. 4. Deployment, implementation and demonstration of project, every project batch shall receive funding from institute with maximum limit decided by BOM) List of Submission 1 Working model of the project 2 Project Report <td></td> <td></td> <td>-</td> <th></th> <td></td> <td></td> <td></td>			-							
1. Identify community needs 2. Covert idea into product 3. Demonstrate project model to meet desired result using suitable software and hardware. 4. Improve their presentation skill, communication skill Course Contents The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. 	Cou	rse Outcomes	(CO)							
 2. Covert idea into product 3. Demonstrate project model to meet desired result using suitable software and hardware. 4. Improve their presentation skill, communication skill Course Contents The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but not limited to: Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. Design of product, processes, methods and systems using multidisciplinary knowledge Fabrication of product, development of software, measurement methods etc. Deployment, implementation and demonstration of project, every project batch shall receive funding from institute with maximum limit decided by BOM) List of Submission Working model of the project Project Report Project Report Presentation and demonstration of project in exhibition Teaching Load 	Stud	ent will be able	to							
 3. Demonstrate project model to meet desired result using suitable software and hardware. 4. Improve their presentation skill, communication skill										
 Improve their presentation skill, communication skill Course Contents The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, processes, methods and systems using multidisciplinary knowledge 3. Fabrication of product, development of software, measurement methods etc. 4. Deployment, implementation and demonstration of project. 5. Presentation of project (For purchase of consumables required for completion of project, every project batch shall receive funding from institute with maximum limit decided by BOM) List of Submission 1. Working model of the project 2. Project Report 3. Presentation and demonstration of project in exhibition Teaching Load One supervisor from the department shall be assigned five project batches of the minor project. The weekly load 										
Course Contents The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, processes, methods and systems using multidisciplinary knowledge 3. Fabrication of product, development of software, measurement methods etc. 4. Deployment, implementation and demonstration of project, every project batch shall receive funding from institute with maximum limit decided by BOM) List of Submission 1 Working model of the project 2 Project Report 3 Presentation and demonstration of project in exhibition Teaching Load One supervisor from the department shall be assigned five project batches of the minor project. The weekly load						hardware.				
The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, processes, methods and systems using multidisciplinary knowledge 3. Fabrication of product, development of software, measurement methods etc. 4. Deployment, implementation and demonstration of project. 5. Presentation of project (For purchase of consumables required for completion of project, every project batch shall receive funding from institute with maximum limit decided by BOM) List of Submission 1 Working model of the project 2 Project Report 3 Presentation and demonstration of project in exhibition Teaching Load One supervisor from the department shall be assigned five project batches of the minor project. The weekly load	4.	Improve their	presentation ski	•						
 collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but not limited to: Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. Design of product, processes, methods and systems using multidisciplinary knowledge Fabrication of product, development of software, measurement methods etc. Deployment, implementation and demonstration of project, every project batch shall receive funding from institute with maximum limit decided by BOM) List of Submission Working model of the project Project Report Project Report Presentation and demonstration of project in exhibition Teaching Load One supervisor from the department shall be assigned five project batches of the minor project. The weekly load 		TI : :	6.4.1			. 1.1.1.1	•,			
The aim is also to make students aware with the process involved in making product from idea. Not more than two students may carry out the minor project together. One supervisor from the department shall be assigned five project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary.The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, processes, methods and systems using multidisciplinary knowledge 3. Fabrication of product, development of software, measurement methods etc. 4. Deployment, implementation and demonstration of project, every project batch shall receive funding from institute with maximum limit decided by BOM)List of Submission 1 Working model of the project 2 Project Report 3 Presentation and demonstration of project in exhibition Teaching Load One supervisor from the department shall be assigned five project batches of the minor project. The weekly load						tical thinking, creativ	vity,			
Not more than two students may carry out the minor project together.One supervisor from the department shall be assigned five project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary.The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, processes, methods and systems using multidisciplinary knowledge 3. Fabrication of product, development of software, measurement methods etc. 4. Deployment, implementation and demonstration of project. 5. Presentation of project(For purchase of consumables required for completion of project, every project batch shall receive funding from institute with maximum limit decided by BOM)List of Submission 1 Working model of the project 2 Project Report 3 Presentation and demonstration of project in exhibitionTeaching LoadOne supervisor from the department shall be assigned five project batches of the minor project. The weekly load						roduct from idea				
One supervisor from the department shall be assigned five project batches of the minor project. The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but not limited to: Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. Design of product, processes, methods and systems using multidisciplinary knowledge Fabrication of product, development of software, measurement methods etc. Deployment, implementation and demonstration of project. Presentation of project (For purchase of consumables required for completion of project, every project batch shall receive funding from institute with maximum limit decided by BOM) List of Submission Working model of the project Project Report Project Report Presentation and demonstration of project in exhibition Teaching Load One supervisor from the department shall be assigned five project batches of the minor project. The weekly load 						nouuet nom uea.				
The project may be related to electrical engineering or may be interdisciplinary. The steps involved for completion of minor project includes, but not limited to: 1. Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. 2. Design of product, processes, methods and systems using multidisciplinary knowledge 3. Fabrication of product, development of software, measurement methods etc. 4. Deployment, implementation and demonstration of project. 5. Presentation of project (For purchase of consumables required for completion of project, every project batch shall receive funding from institute with maximum limit decided by BOM) List of Submission 1 Working model of the project 2 Project Report 3 Presentation and demonstration of project in exhibition Teaching Load						the minor project				
 Conceptualization of innovative idea through literature and market survey; sight visits; interaction with community or industry, socio-economic survey etc. Design of product, processes, methods and systems using multidisciplinary knowledge Fabrication of product, development of software, measurement methods etc. Deployment, implementation and demonstration of project. Presentation of project (For purchase of consumables required for completion of project, every project batch shall receive funding from institute with maximum limit decided by BOM) List of Submission Working model of the project Project Report Presentation and demonstration of project in exhibition Teaching Load One supervisor from the department shall be assigned five project batches of the minor project. The weekly load 										
One supervisor from the department shall be assigned five project batches of the minor project. The weekly load		 Conceptual community of 2. Design of p Fabrication Fabrication Presentation Progentation (For purchase institute with List of Submit 1 Working management 2 Project Rep 3 Presentation 	lization of innov r industry, socio- product, processo a of product, dev nt, implementation n of project e of consumables maximum limit ssion odel of the proje ort n and demonstra	vative idea through lite economic survey etc. es, methods and syster elopment of software, on and demonstration required for completi decided by BOM) ct	erature and market survey; ns using multidisciplinary measurement methods etc of project.	sight visits; interact knowledge c.				
				rtment shall be assign	ed five project batches of t	the minor project. The	he weekly load			
101 III 5000 15 2111/ WEEK					ca nye project batches of t	ine minor project. I	ne weekiy ioau			

Government College of Engineering, Karad
ThirdYear (Sem – V) B. Tech. Electrical Engineering
EE 2510: Mini Project

Mapping of COs and POs

Course	Course Outcomes (CO)						
Studen	it will be able to						
1.	Identify community needs						
2.	Covert idea into product						
3.	Demonstrate project model to meet desired result using suitable software and hardware.						
4.	Improve their presentation skill, communication skill						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2		1	1	2	2	3	3	2	2	2	3
CO 2	3	2	2	1	2	3		2	3	3	3		2
CO 3	3	1	1	2	3	2	1	2	2	3	3	2	3
CO 4	2	2	2	1	1	1			2	3	1		3

Assessment Pattern

The continuous assessment shall be done by the supervisor based on attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The end semester assessment shall be done by external referee one week before the term end. The department shall arrange exhibition (all department will arrange the exhibition on same day) of the minor projects done by students and the referee will judge the project work in accordance with the outcomes of the course by interacting with students and marks will be awarded to individual student. This exhibition will remain open for all students, parents, and other citizens visiting the exhibition.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

		Governmen	t College of Engineer	ring, Karad	
	Thir	d Year (Sem	-V) B. Tech. Electri	ical Engineering	
	EE 25	511: Technica	al Training & Techn	ical Presentation	
Teaching	Scheme			Examination Sche	eme
Practical				CT1	
Tutorials		1Hr/week		CT2	
Total Cred	its	1		TA/CA	50
ESE					
			·	Duration of ESE	1 hr.
Course O	utcomes				
1.	Student will be	familiar with I	ndustrial Environment.		
2.	Student will be	aware of recen	t trends and technologie	s used in industry	
3.	Student will be	able communio	cate with their colleague	es, superiors and subc	ordinates in industry.
Course Co	ontents				
	vacation. They	will prepare rep semester of Fin	eks industrial training in port on it and make pres nal Year of B. Tech. The epartment.	entation before their	classmates and

Government College of Engineering, Karad
Third Year (Sem – V) B. Tech. Electrical Engineering
EE 2511: Technical Training & Technical Presentation

Mapping of COs and POs

Course	Course Outcomes (CO)						
Student will be							
1.	Familiar with Industrial Environment.						
2.	Aware of recent trends and technologies used in industry						
3.	Able communicate with their colleagues, superiors and subordinates in industry.						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2		1	1	2	2	3	3	2	2	2	3
CO 2	3	2	2	1	2	3		2	3	3	3		2
CO 3	3	1	1	2	3	2	1	2	2	3	3	2	3
CO 4	2	2	2	1	1	1			2	3	1		3

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand			5	5
Apply			10	10
Analyse			10	10
Evaluate				
Create				
TOTAL			25	25

		Government College of Engineering, Karad	
	Th	ird Year (Sem. – VI) B. Tech. Electrical Engineering	
		EE 2601 : Economics for Engineers	
Teachin	g Scheme	Examination Scher	ne
Lectures			15
Tutorials		CT – 2	15
Total Cre	edits 03	ТА	10
		ESE	60
		Duration of ESE	02 Hrs 30 Mi
	Outcomes (CO)		
	will be able to		
1.		ary principles of economics	
2.	To understand public		
3.		conomic development in post Independent era.	
4.	To acquaint with star	ndard concepts and tools of economics useful in engineering profession	
		Course Contents	Hour
Unit 1		Methodology of Economics:	(11)
	Demand/Supply – ela	•	
		and Application. Theory of the Firm and Market Structure. Basic	
		cepts (including GDP/GNP/NI/Disposable Income) and Identities for both	
		omies. Aggregate demand and Supply (IS/LM). Price Indices (WPI/CPI),	
TT 0	Interest rates, Direct a		
Unit 2		t and Value Engineering	(5)
	Types of projects, app		
	Types of production s		
	Types of values, Valu Time value of money		
	Project evaluation		
Unit 3		mics–Welfare, Externalities, Labor Market. Components of	(8)
Omt 5		ial System, Central Bank –Monetary Aggregates; Commercial Banks & th	
		1 Debt Markets. Monetary and Fiscal Policy Tools & their impact on the	ien
	economy – Inflation a		
	2	Mechanism of energy markets; comparative market systems; determinatio	n of
	prices under different		-
Unit 4		s/Managerial Economics and forms of organizations.	(8)
		-Techniques, Types of Costs, Budgets, Break even Analysis, Capital	
	Budgeting, Application	on of Linear Programming. Investment Analysis – NPV, ROI, IRR, Payba	ick
	Period, Depreciation,	Time value of money. Business Forecasting – Elementary techniques.	
	Statements – Cash flo	ow, Financial. Case Study Method	
Unit 5	Indian economy Bri	ef overview of post-independence period – plans. Post reform	(8)
		productive activity. Issues of Inclusion - Sectors, States/Regions, Group	
		nization. Employment-Informal, Organized, Unorganized, Public, P	rivate.
		y Debates in Monetary, Fiscal, Social, External sectors	
Unit 6	Tendering and Biddin	ng procedures	(8)
Text Bo			
		damentals of Engineering Economics, Wiley Precise Text book Series	
		a(2004), Managerial Economics, Tata McGraw Hill	
		9), Indian Economy, Himalaya	
	ce Books		
1. Pare		ook of Business Economics, Sunrise Publishers), Principles of Economics, Thompson Asia	
	1. a		

Government College of Engineering, Karad							
Third Year (Sem – VI) B. Tech. Electrical Engineering							
EE 2601 : Economics for Engineers							

Mapping of COs and POs

Course	Course Outcomes (CO)						
Student	is will be able to						
1.	To acquaint elementary principles of economics						
2.	To understand public sector economics						
3.	To acquaint Indian economic development in post Independent era.						
4.	To acquaint with standard concepts and tools of economics useful in engineering profession						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					2	3
CO 4	3	1	2	1	1	1							3

Assessment Pattern(with revised Bloom's Taxonomy)

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

		Go	vernment College of I	Engineerii	ng, Kara	d					
		Third Ye	ear (Sem. – VI) B. Tec	h. Electri	cal Engi	neering					
			EE 2602:Interne	t of Thing	gs						
Teachin	g Scheme					Examination Scl	neme				
Lectures	03Hrs/v	veek				CT – 1	15				
Tutorials	s					CT – 2	15				
Total Cr	edits 03					ТА	10				
						ESE	60				
						Duration of ESE	02 Hrs	30 Min			
	Outcomes (CO))									
	will be able to										
1.			n engineering application								
2.			nd network components f		plication						
3.	U	1 0	stems for given application								
4.	Use cloud com	puting and d	ata analytics for interpret		lected da	ta		1			
			Course Co	ntents				Hours			
Unit 1	IOT Introduc			~ m 1			0	(4)			
	· ·		, Applications where I	OT can b	e deploy	ed, Benefits/challe	enges of				
	deploying an I		want and alsotnamics (amo	1:f: f: 14.		(disitization) disit	al ai an al				
			ront-end electronics (amp				ai signai				
			n, choice of channel (wire ad power constraints for I			iu uata analysis.					
Unit 2	Signals, Senso				lentation			(08)			
Unit 2			s, shape and strength, Se	nsor non-id	lealities.	Sensitivity and off	set drift	(00)			
			signal, non-linearity, Rea								
			-power trade-off, Circuit								
			p zeroing etc.), Power/e								
			putation, storage)	0.			0				
Unit 3			mputing in IOT:					(10)			
	Review of Cor	nmunication l	Networks, Challenges in	Networking	g of IOT I	Nodes, range, Band	lwidth,				
	Machine-to-M	achine (M2M	I) and IOT Technology F	Fundamenta	ıls, Mediu	um Access Control	(MAC)				
			inications, Standards for								
			Low-Power Wide Area			·					
			power budgets, data rate								
			lodel, Cloud computing I								
			oftware relevant to micr	ocontroller	and IO	l platforms (enter	prise or				
Ilmit 1	consumer), use		liestiona								
Unit 4	Data Analysis		ata, Linear regression, Ba	sice of alua	toring of	assification		(6)			
TT:4 F				sics of clus	aering, ci	assilication.					
Unit 5	Security, Priv	•		anotion T	Inique co	ourity shallonges	of IOT	(6)			
	-		ectrum of security consid		-	• •					
		net of things p	privacy background, Unic	que privacy	y aspects	of internet of thin	gs, Trust				
Unit (for IOT.	llustratina T/	T dosign.					(6)			
Unit 6	Case studies I		J 1 design: hting, Home intrusion de	tection				(6)			
			logistics and transportati								
	Agriculture: Si	•	e								
			rt grid. Remote metering	and monite	oring Ene	rgy management					
Text Bo		incoming. Billa	it give remote metering		, ing. Ditt						
		shdeepBahoa	, "Internet of Things: A H	lands-On A	pproach'	. UniversitiesPress	(India) P	rivate			
	nited, 2016, ISB				-rr ¹⁰ uon	, 2111, 015101051 1050					
			erine Mulligan, Stamatis	7 1	C. f.	Lunger de Dervid D	1 45				

	Machine-to-Machine to the Internet of Things", Academic Press, Elsevier, 2014, ISBN: 978-0-12-407684-6								
Ref	erence Books								
1.	Karen Rose, Scott Eldridge, Lyman Chapin, "The Internet of Things: An Overview", Internet								
	Society, 2015								
2.	Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley, 2014, ISBN								
	978-1-118-43062-0								
3.	Daniel Kellmereit, "The Silent Intelligence: The Internet of Things", 2013, ISBN 0989973700								
Use	ful Links								
1.	https://onlinecourses.nptel.ac.in/noc20_cs66/preview								
2.	https://www.coursera.org/specializations/iot								
3.	https://nptel.ac.in/courses/106/105/106105166/								

Government College of Engineering, KaradThird Year (Sem – VI) B. Tech. Electrical EngineeringEE 2602 : Internet Of Things

Mapping of COs and POs

Cours	e Outcomes (CO)
Studen	nts will be able to
1.	Understand impact of IOT in engineering applications.
2.	Select appropriate sensors and network components for given application
3.	Design and develop IOT Systems for given application
4.	Use cloud computing and data analytics for interpretation of collected data

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	1	2	2	0	3	3	3	0	0	3	3	3
CO 2	1	3	3	3	3	2	1	3	3	3	2	3	3
CO 3	2	3	3	3	3	2	1	3	3	3	2	3	3
CO 4	2	3	3	3	3	2	1	3	3	3	2	3	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	2	2	1	5
Understand	2	2	1	10
Apply	3	3	2	10
Analyse	3	3	2	10
Evaluate	3	3	2	10
Create	2	2	2	15
TOTAL	15	15	10	60

ELECTIV II

		Governmer	nt College of Engi	neering, Kar	ad			
	Th	ird Year (Sem	. – VI) B. Tech. E	lectrical Eng	gineering			
		EE 2613 : H	Elective II - HVD	C Transmiss	ion			
Teachir	ng Scheme				Examination Sch	neme		
Lecture					CT – 1	15		
Tutorial					CT – 2	15		
Total C					TA	10		
10141 01					ESE	60		
					Duration of ESE	02 Hrs	30 Min	
Course	Outcomes (CO)							
	s will be able to							
1.	Analyse the operation	n of Line Comm	itated Converters an	d Voltage Sou	rce Converters			
2.	Apply the control stra							
3.	Evaluate the improve	<u> </u>			em			
4.	Compare the advanta							
			Course Conten				Hours	
Unit 1	DC Transmission T	echnology	Course conten	15			(4)	
CIIIC I	Comparison of AC		ission (Economics	Technical Pe	erformance and Rel	iability)	(4)	
	Application of DC Transmission. Types of HVdc Systems. Components of aHVdc system. Line Commutated Converter and Voltage Source Converter based systems							
Unit 2	Analysis of Line Co						(10)	
Cint 2					sis neglecting com	nutation	(10)	
	Line Commutated Converters (LCCs): Six pulse converter, Analysis neglecting commutation overlap, harmonics, Twelve Pulse Converters. Inverter Operation. Effect of Commutation Overlap.							
	Expressions for average dc voltage, AC current and reactive power absorbed by the converters.							
	Effect of Commutat							
	Converters (VSCs):							
	Sinusoidal Pulse Wi							
	frame. Real and Read					1000000		
Unit 3	Control of HVdc Co	A					(10)	
011100	Principles of Link C		Vdc system. Contro	l Hierarchy. Fi	iring Angle Controls	_	(10)	
	Phase-Locked Loop,							
	level Controllers Pow		0	•		•		
	Principles of Link Co							
	Power Control/AC vo		•		8			
Unit 4	Components of HVI		-				(8)	
	Smoothing Reactors		r Sources and Filter	s in LCC HV	dc systems DC line:	Corona	(0)	
	Effects. Insulators, T				-			
	systems. dc breakers.							
Unit 5	Stability Enhancem						(4)	
	Basic Concepts: Pov			quency Stabil	ity. Power Modulatio	on: basic		
	principles – synchron							
Unit 6	MTDC Links:	<u>_</u>	<u>U</u>	y	<u> </u>		(4)	
	Multi-Terminal and	Multi-Infeed Sys	stems. Series and P	arallel MTdc	systems using LCC	s. MTdc		
	systems using VSCs							
	Converters.							
Text Bo								
	R. Padiyar, "HVDC Pc	wer Transmissio	n Systems" New A	ge Internation	al Publishers 2011		1	
	W. Kimbark, "Direct C							
			, ,,					
Referer	nce Books							
							I	

1.	J. Arrillaga, "High Voltage Direct Current Transmission", Peter Peregrinus Ltd., 1983						
Use	Useful Links						
1.	https://nptel.ac.in/courses/117/106/117106034/						
2.	https://nptel.ac.in/courses/108108076/						
3.	3. <u>https://nptel.ac.in/courses/108105062/</u>						

Government College of Engineering, Karad
Third Year (Sem. – VI) B. Tech. Electrical Engineering
EE 2613 : Elective II - HVDC Transmission

Mapping of COs and POs

C							
Course	Course Outcomes (CO)						
Studen	Student will be able to						
1.	Analyse the operation of Line Commutated Converters and Voltage Source Converters						
2.	Apply the control strategies used in HVdc transmission system.						
3.	Evaluate the improvement of power system stability using an HVdc system.						
4.	Compare the advantages of dc transmission over ac transmission						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	2	1	2	3							2
CO 3	3	1	1	2	3	2	1					2	3
CO 4	2	2	2	1	1	1							3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

		Government College of Engineering, Karad	1		
	Th	ird Year (Sem. – VI) B. Tech. Electrical Engin			
		Elective II- EE 2623 :Network Synthesis			
Teachin	ig Scheme		Examination Sche		
Lectures			CT – 1	15	
Tutorial			CT – 2	15	
Total Cr	redits 03		ТА	10	
			ESE	60	
C			Duration of ESE	02 Hrs 30	Mın
	Outcomes (CO)				
	will be able to	-1-			
	tify the excitation sign		aturoaliza		
		t and transfer impedance and admittance of various needs the network function and ascertain the stability.	etworks		
	thesis the given LCpas				
4. Syn	liesis ile given Le pas	Course Contents		н	ours
Unit 1	Network Functions	Course Contents			(6)
Cint I		signals, network functions of one port and two port ne	tworks		(0)
	network functions of		ett offics,		
	i. Ladder networl				
	ii. Non-ladder net				
	iii. Terminated two				
Unit 2	Poles and zeros	<u>^</u>			(7)
	Poles and zeros of ne	twork functions, necessary conditions for driving poir	nt functions, necessa		
	conditions for transfe	r functions			
Unit 3	Pole zero diagram				(8)
	Pole zero diagram an				
		response from pole zero diagram or plot			
		nd phase response			
	Stability of passive n	etwork			
	Routh-Hurwitz array				
Unit 4	Analysis and synthe	-	1.6		(7)
		positive real functions, properties of positive rea	-	to test	
TI #4 F	A	as, concept of network synthesis, basic operation of re	moval of a pole		$\overline{(0)}$
Unit 5	Procedure for synth	esis he port or two port terminal), series reactive network,	norallal reactive no		(6)
		nces of LC network: driving point impedance, driving		twork,	
Unit 6	Filters and attenuat				(6)
Omto		ed, classification and characteristics of filters, low p	ass high nass han		(0)
		on band stop filter, constant K filter, Analysis and des	U	u puss	
Text Bo					
		Iarlapur, "Network Analysis and Synthesis", Electrote	ch Publication	I	
	ce Books				
		to Network Synthesis", PHI Publication		I	
		n, "Circuits and Network", Third Edition, 2006, Tata I	McGraw Hill		
Useful I		,,,			
		s/108/102/108102042/		I	
		<u>, , , ,</u>			

Government College of Engineering, Karad
Third Year (Sem. – VI) B. Tech. Electrical Engineering
Elective II- EE 2623 :Network Synthesis

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

1. Identify the excitation signals.

2. Determine the driving point and transfer impedance and admittance of various networks

3. Draw pole zero diagram of the network function and ascertain the stability.

4. Synthesis the given LC passive network

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Assessment Pattern(with revised Bloom's Taxonomy)

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	15
Analyse	5	5	3	20
Evaluate	5	5	4	25
Create				
TOTAL	15	15	10	60

			Government College	of Enginee	ring, Kara	d		
		Thi	ird Year (Sem. – VI) B. 7		<u> </u>	<u> </u>		
			Elective II - EE 2633 :	Digital Co	ntrol Syste	m		
						T	0.1	
	ing Sche					Examinatio		
Lectur Tutori		03Hrs/week 00Hrs/week				CT - 1 CT - 2	15 15	
	Credits	00HIS/Week 03				TA	10	
10141	Cieuns	03				ESE	60	
						Duration of		30 Min
Cours	se Outcon	nes (CO)				D'aración or		20 11111
	nts will be							
1. D	emonstrat	e understanding	of sampling process and dis	screte dynam	nics systems	modeling		
2. A	nalyze dig	gital control syst	em in open loop and closed	loop.				
	<u> </u>		crete time systems					
4. D	esign of o	utput feedback						
TT 1				Contents				Hours
Unit 1			rete Time Systems:					(5)
TI			ampling Process, reconstruction of discussion and					(7)
Unit 2			sentation of discrete time synamical sectors and inverse transform	ystems:				(7)
			n, state space representation	of DTS				
		ing of s-plane to		01 D 15				
Unit 3		vsis of DCS:						(8)
		response analys	is of DCS					~ /
	Contr	ollability, reach	ability, observability constru	ctability and	l stability an	alysis Juri's s	stability,	
			DTS. Stabilizability.					
Unit 4	0	n of Classical I						(8)
	-	Ũ	in time domain and frequ	lency doma	in. Design	of DCS usin	ng dead beat	
	respon		1 11 4 1 '					
T T •4 /			deadbeat response design	1				
Unit s		n of state feedb		dhack dasid	m stabilizi	na controllar	and Tracking	(7)
			oller design. Partial state fee ear quadratic controller desig		gii , stadilizi	lig controller	and macking	
Unit (n of Output fee		511				(7)
Ome	0	-	roller design, Reduced or	der observe	r design. (Output feedba	ock controller	(7)
			out feedback controller desig					
	0	· .	n based controller	,8	r	·F ··· · · · · · · · · · · · · · · · ·		
Text I	Books							
1. K	K. Ogata, I	Discrete Time C	ontrol Systems, Prentice Hal	l, 2/e, 1995				
		0	and State Variable Methods	· · · · · · · · · · · · · · · · · · ·				
		0	Systems, Oxford University	Press, 2/e, I	ndian Editic	on, 2007		
	ence Boo							
			l and M. L. Workman, Digit			•		
			ark, Computer Controlled Sy	ystems - The	eory and De	sign,Prentice	Hall, 3/e, 1997	1
		esearch papers						
	_		<u>108/103/108103008</u>	1				
			rate output feedback & perio	dic output f	eedback			
3. R	kesearch p	aper on discrete	disturbance estimation.					

Government College of Engineering, Karad Third Year (Sem. – VI) B. Tech. Electrical Engineering Elective II - EE 2633 :Digital Control System

Mapping of COs and POs

Course Outcomes (CO) Students will be able to

1. Demonstrate understanding of sampling process and discrete dynamics systems modeling

2. Analyze digital control system in open loop and closed loop.

3. Design of controller for discrete time systems

4. Design of output feedback controllers

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	3	3		3						2		2	3
CO 2	3	3		3						2		2	3
CO 3	3	3		3						2		2	3
CO 4	3	3	3	3	3					2		3	3

Assessment Pattern(with revised Bloom's Taxonomy)

Knowledge Level	CT 1	CT 2	ТА	ESE
Remember				
Understand				
Apply	10	5	1	10
Analyse	5	5	2	10
Evaluate		5	3	20
Create			4	20
TOTAL	15	15	10	60

		Government	College of E	ngineering, Kar	ad		
	Th	ird Year (Sem. –	VI) B. Tech	. Electrical Eng	gineering		
		Elective-II-EE 2	643 : Renew	able Energy So	urces		
Teaching	g Scheme				Examination Sc	heme	1 1
Lectures	03Hrs/week				CT – 1	15	
Tutorials					CT – 2	15	
Total Cre					TA	10	
100001011					ESE	60	
					Duration of ESE		30 Min
Course (Dutcomes (CO)					•	
Students	will be able to						
1. Unde	erstand the Need, impo	ortance, and scope of	of non-conven	tional energy reso	urces.		
	ly thesite selection idea						
	yse the performance o	A A					
	uate various performa		in practice.				
ui	r		Course Con	tents			Hours
Unit 1	Introduction:						(4)
	Environmental conse	equences of fossil	fuel use. In	nportance of ren	ewable sources of	f energy.	(-)
	Sustainable Design a	A		A		0.	
	energy sources, Pres						
	energy sources.			8,			
Unit 2	Solar Energy:						(8)
0	Solar Radiation, Mea	asurements of Sola	r Radiation. F	lat Plate And Co	ncentrating Collecte	ors. Solar	(0)
	Direct Thermal App				6		
	Voltaic Conversion, S						
	P-V & I-V charact					nnections.	
	ratings& governing of			-	5		
	systems, grid interfac	-			,		
Unit 3	Wind Energy:						(8)
	Basic principle of wi	ind energy convers	ion, efficienc	y of conversion, s	ite selection. Electr	ric power	
	generation-basic com						
	towers, various gener	·			•	•	
	monitoring. Various	power generating	schemes, MI	PPT schemes, gri	d interface, Applic	ations of	
	wind energy.			-			
Unit 4	Geothermal Energy	•					(8)
	Geothermal fields, es	timates of geothern	nal power. Ba	sic geothermal ste	am power plant, bi	nary fluid	
	geothermal power pla	ant and geothermal	preheat hybr	id power plant. Ad	dvantages and disad	dvantages	
	of geothermal energy	. Applications of ge	eothermal ene	rgy. Geothermal e	nergy in India.		
	Biomass Energy:	-					
	Introduction, biomass						
	generation, basic biog						
	Pragati design bioga			Energy plantation	. Alternative liqui	d fuels –	
	ethanol and methanol		on				
Unit 5	Other Energy Source						(6)
	Tidal Energy: Energy						
	Energy from waves,						
	Production and Stor	-	-	-	s types - construc	ction and	
	applications. Energy						
Unit 6	Applications of Powe	er Electronics conve	erters for RES	. Introduction to A	C and DC microgri	ids.	(6)
Text Boo	oks						

1.	B. H. Khan, Non-Conventional Energy Resources, , The McGraw	Hill								
2.	67 1									
3.	D.P.Kothari, K.C Singal, RakeshRanjan "Renewable Energy Sources and Emerging Technologies", PHI Learning									
	Pvt.Ltd, New Delhi, 2013.									
Ref	erence Books									
1.	Chetan Singh Solanki, Solar Photovoltaics: fundamentals, Technol	ogies and A	pplications, Prentice Hall of	India.						
2.	K. M. Mittal, "Non-Conventional Energy Systems", A H WheelerF	Publishing C	Co Ltd							
3.	G.D. Rai, "Non-conventional Energy sources", Khanna Publishers	5.								
4.	BansalKeemann, Meliss, "Renewable energy sources and conversion technology", Tata McGraw Hill.									
5.	Ali Keyhani, Design of Smart Power Grid Renewable Energy Syste	ems, Wiley-	-IEEE Press.							
6.	Remus Teodorescu, Marco Liserre, Pedro Rodriguez, Grid Conver	ters for Pho	ptovoltaic and Wind Power S	Systems,						
	John Wiley and Sons, Ltd.									
Use	ful Links									
1.	https://nptel.ac.in/courses/103/107/103107157/									
2.	https://nptel.ac.in/courses/108/105/108105058/									
3.	https://nptel.ac.in/courses/108/108/108108078/									

Government College of Engineering, Karad							
Third Year (Sem. – VI) B. Tech. Electrical Engineering							
Elective-II-EE 2643 : Renewable Energy Sources							

Mapping of COs and POs

Course Outcomes (CO)

Students will be able to

1. Understand the Need, importance, and scope of non-conventional energy resources.

2. Apply thesite selection ideas for practical implementation and use of RES.

3. Analyse the performance of RES in practice.

4. Evaluate various performance indices of RES in practice.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO	PO	PO	PSO
CO↓										10	11	12	
CO 1	2	2	2	1	1	2	2					2	3
CO 2	3	2	3	1	2	3	1					2	3
CO 3	3	2	2	2	3	2	1					2	3
CO 4	2	2	2	1	2	1							3

Assessment Pattern(with revised Bloom's Taxonomy)

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

			Government Coll	ege of Enginee	ering, Kara	d		
		Thi	ird Year (Sem. – VI)	0 0				
				Power Electro	<u> </u>	8		
Teach	ing Sche	me				Examination S	cheme	
Lectur		03Hrs/week				CT – 1	15	
Tutori						CT - 2	15	
	Credits	03				ТА	10	
						ESE	60	
						Duration of ESI		30 Min
Cours	e Outcor	nes (CO)	I					
	nts will be							
1.	Apply	y the basic know	ledge of Power Electron	nics for practical	l implementa	tion.		
2.			cuits & gate drive circu					
3.			and design process of v					
			Cor	irse Contents				Hours
Unit 1	Intro	duction: Applic	cations of Power Elect	ronics in variou	s sectors, P	ower Electronics	Structure	(04)
			ow power analog electro	· ·				
			Switches: Basic constr					
), study of modules / po	wer switches ava	ailable in con	nmercial market.		
Unit 2		ysis of switching						(04)
			: Requirements of gate				r switches	
			IGBT etc), study of gat					
Unit 3			iers: 1-ph, 3-ph, rect	fiers, control to	echniques, a	analysis with R-	L-E load,	(12)
		rical, application						
			rs: 1-ph, 3-ph, rectif	ers, control te	chniques, a	nalysis with R-	L-E load,	
		rical, application		ta controla Du		and anylighting	of	
		erters in practice	24 pulse) rectifiers &	its controls, Du	iai Converti	ers, applications	of various	
		•	edance on performanc	a of convertors				
Unit 4			C Converters: Buck,			converters and	analysis	(06)
Unit 4			ied DC-DC converters	Doost, Duck-	Boost, Cuk	converters and	anarysis,	(00)
			verters, Applications of	of DC-DC conve	rters in pract	tice		
			ied DC-DC converters		reers in prace			
Unit 5			1-ph, 3-ph converters,	control techniqu	ies, applicati	ions, introduction	n to matrix	(02)
eme	conve		r pri, e pri contenens,		, approved			(0_)
Unit 6			Classifications of inv	erters, 1-ph, 3-p	h VSI and	CSI, Control (m	odulation)	(14)
			g., SPWM, SVPWM, S	· • •			,	
			tilevel inverters (MLI)	·				
Text I	Books							
1. P	Power El	ectronics: Circu	its Devices and App	lications, M. H	I. Rashid, 3	Brd Edition, Pea	arson/Prenti	ce Hall
Р	ublication	ns						
2. P	ower Ele	ctronics Convert	ters, Applications and E	esign, Ned Moh	an, 3rd editi	on, Jonh Wiley a	nd Sons.	
Refer	ence Boo	ks						
		A	les and Applications, Jo	A 4		Hill Publication, 2	2010	
			V. Lander, 3rd Edition N	· · · · · ·				
	-		d AC Drives, Bin Wu, I					
			for Power Converters:	•	Practice, D.	G. Holmes, Thor	mas A. Lip	o, IEEE
		ey interscience, .	Jonh Wiley and Sons In	c. Pub.				1
	l Links							
1. <u>h</u>			<u>108/101/108101038/</u> (Prof. B. G. Ferna	andes)			
_								
				Prof. G. Bhuvan Prof. L. Umanan	eshwari)			

4. <u>https://nptel.ac.in/courses/108/107/108107128/</u> (Prof. Avik Bhattacharya)

Government College of Engineering, Karad
Third Year (Sem. – VI) B. Tech. Electrical Engineering
EE 2604 :Power Electronics

Mapping of COs and POs

Cour	Course Outcomes (CO)						
Stude	Students will be able to						
1.	Apply the fundamentals of Power Electronics for practical implementation of PE (converter) applications.						
2.	Analyse switching circuits & gate drive circuits for control of power switches.						
3.	Evaluate functioning and design process of various Power Electronics converters.						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	1	3	2	1			1				2	3
CO 2	3	2	3	3			2					3	3
CO 3	3	3	3	3	3	2	1	2		1		3	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	8	-	2	10
Understand	7	5	2	10
Apply	-	10	2	20
Analyse	-	-	2	10
Evaluate	-	-	2	10
Create	-	-	-	-
TOTAL	15	15	10	60

			Government	College of Engine	eering, Kara	ad		
		Th		· VI) B. Tech. Ele				
			EE 2605 :	Electrical Machi	ine Design	0		
					0			
Teachi	ng Sche	me				Examination Sch	eme	
Lecture		03Hrs/week				CT – 1	15	
Tutoria	ls					CT – 2	15	
Total C	Credits	03				ТА	10	
						ESE	60	
						Duration of ESE	02 Hrs	30 Min
Course	e Outcor	nes (CO)				•		
Student	ts will be	e able to						
1.	Analy	vse the effect of	design parameters	on performance of e	electrical mac	chines		
2.	Evalu	ate the perform	ance parameters of	static and dynamic	electric mach	nines		
3.	Desig	n different parts	s of AC &DC mach	nine.				
				Course Contents				Hours
Unit 1	Conc	ept of compute	r-aided design:					(8)
	Introd	luction, Comput	ter Aided Design, l	Explanation of detai	ils of flow ch	art, Input data to be	fed into	
	the pr	ogram, Applica	ble constraints Ma	x or Minimum peri	missible limit	s, Output data to be	e printed	
	after	execution of pro	ogram, Various ob	ective parameters f	or optimizati	on in an electrical r	nachine,	
	Select	tion of optimal of	design, Explanation	n of lowest cost and	significance	of "Kg/KVA", Flow	charts	
Unit 2	Fund	amental aspect	s of electrical mad	chine design:				(6)
	Introd	luction, Design	Factors, Limitati	ons in design, Mo	odern Trends	in design, manuf	acturing	
				nce of specific load				
	Electi	rical Materials:	Conducting Materi	als, Desirable Prop	erties, Insulat	ing Materials and N	<i>Aagnetic</i>	
	Mater	rials; Magnetic c	circuit calculations					
Unit 3		n of dc machin						(6)
						Poles, Main Dimens		
						s. Estimation of Am		
		0		ons of Yoke, Main	Pole and Air	Gap. Design of Shu	nt and	
		Field Winding						
Unit 4		n of transform						(8)
	·	·	0			of Specific Loading	0	
	1		,			re, Estimation of Nu		
						Windings, No Load		
	-		0	• 1		centric coils, and cal	culation	
T T • / =				and Cooling (Round	and Rectang	ular) Tubes.		
Unit 5			e induction motor				. 1.	(8)
						tator. Design of sta		
		•	0			ots for Squirrel Cag		
	0		and End Ring. De	esign of Slip King r	otor. Estimati	ion of No Load Cur	rent and	
Unit 6		ige Reactance.	ign of dc machine	ale transformar				(6)
Umi o					I docion of D	C machines& Tran	formar	(6)
			1 0	C machine& Transf	÷		stormer.	
		Swi open source	sonware-based D		onner part de	sign		
Toyt P	ookc							
Text B		nov " A Course	in Flootnias Mart	ino Docion" Dham	notroion dages	Dalhi		
				nine Design", Dhan				
2. K	IVI VISNI	iu wiuriny, Com	iputer AldedDesign	n of Electrical Mach	nnes, d's Publ	ication.		
Dofore	noo Doo	20						1
	nce Boo		n and Tasting of Fl	actrical Mashings"	Whaalar Deel	liching		
				ectrical Machines",				
2. R.	. к. Agai	wai, Principle	s of Electrical Mac	hine Design", Essak	ay Publicatic	ms, Denn.		

3.	Ramamoorthy M, "Computer Aided Design of Electrical Equipment", East-West Press.						
4.	M. N. O. Sadiku, "Numerical techniques in Electromagnetics", CRC Press Edition-2001						
	ful Links NPTEL MOOC Course - Electrical Equipment and Machines: Fini	te Element					
	Analysis (Lectures 23 to 40): https://nptel.ac.in/courses/108/101/108101167/						

Government College of Engineering, Karad
Third Year (Sem. – VI) B. Tech. Electrical Engineering
EE 2605 : Electrical Machine Design

Mapping of COs and POs Course Outcomes (CO)

Students will be able to

1. Analyze the effect of design parameters on performance of electrical machines

Evaluate the performance parameters of static and dynamic electric machines
 Design different parts of AC & DC machine.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	3	2	3	3	2	2					2	3
CO 2	3	3	3	3	2	3	3					2	3
CO 3	3	3	2	2	3	2	3					2	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember				
Understand				
Apply	5	5	3	20
Analyse	5	5	3	20
Evaluate	5	5	4	20
Create				
TOTAL	15	15	10	60

		(overnment College of	Engineering, Karad	1			
			Year (Sem. – VI) B. Te					
			EE 2606:Internet		0			
				0				
Teaching S	Schen	ne			Examination Sch	neme		
Lectures					CT – 1			
Tutorials					CT – 2			
Practical		02 Hrs/week			CA	25		
Total Credi	ts	01			ESE	25		
					Duration of ESE	3 hrs		
Course Ou								
Student wil								
1.			of sensors and actuators for					
2.			roller assembly using appr					
3.			erface to transfer and rece	ive data from storage of	devices and cloud			
4	Des	sign the IOT system	for given application	•				
F	1			eriments				
Experiment			crocontroller) Arduino/ ST					
Experiment			types of sensors, actuators, transducers.					
Experiment		Experiment based on IR sensor. Write an application to detect obstacle and notify user using LED.						
Experiment	: 4	Experiment based LED.	on FIRE sensor. Write an	application to detect F	ire and notify users	susing		
Experiment	5		on Ultrasonic sensor. Writ	te an application to fin	d out distance betw	reen		
Experiment	6		on DHT11 (Temperature a	and humidity) sensor	Write an application	n to		
Experiment	. 0		rature and humidity.	and numberty / sensor.	white an application	11 10		
Experiment	7		on interfacing to control th	ne operation of stepper	motor remotely			
Experiment			eb interface to control the			erface.		
Experiment			ion of elevator operations.					
Experiment			ent clustering and configur	ring devices using MP	I library.			_
Experiment			project in any one of the a					
(Home Automation: Smart Lighting, Smart Appliances, Intrusion Detection, Smoke/Gas					Bas			
Detectors, Cities: Smart Parking, Smart Lighting, Smart Roads, Structural Health								
	Monitoring, Surveillance, Emergency Response, Environment: Weather Monitoring, Air					Air		
			ng, Noise Pollution Monit					
			Smart Grids, Renewable					
Management, Smart Payments, Smart Vending Machines, Logistics - Route Generation &								
			Tracking, Shipment Monit					
			Green House Control, Indu			loor		
		Air Quality, Moni	toring, Health and Lifestyl	e: Health and Fitness 1	Monitoring.)			

Government College of Engineering, Karad
Second Year (Sem. – VI) B. Tech. Electrical Engineering
EE 2606 : Internet Of Things Lab

Mapping of COs and POs

 - PP8							
Course Outcomes (CO)							
Student will be able to							
1.	Understand interfacing of sensors and actuators for IOT systems						
2.	Program the microcontroller assembly using appropriate tool						
3.	Use communication interface to transfer and receive data from storage devices and cloud						
4.	Design the IOT system for given application						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	2	1	2	2	0	3	3	3	0	0	3	3	3
CO 2	1	3	3	3	3	2	1	3	3	3	2	3	3
CO 3	2	3	3	3	3	2	1	3	3	3	2	3	3
CO4	2	3	3	3	3	2	1	3	3	3	2	3	3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember			3	
Understand			2	
Apply			5	10
Analyse			5	5
Evaluate			5	5
Create			5	5
TOTAL			25	25

	Go	vernment College	e of Engineering, Ka	rad		
	Third Ye		Tech. Electrical En	gineering		
		EE 2607:Powe	er Electronics Lab			
Teaching Scher	ne			Examination Sch	neme	
Lectures				CT – 1		
Tutorials				CT – 2		
Practical	02Hrs/week			CA	25	
Total Credits	01			ESE	25	
				Duration of ESE	3 hrs	
Course Outcom						
Student will be a						
	converter circuits and a					
2. Build his/l	her own simple conver		oratory and test the san	ne.		
			Experiments			
Experiment 1			g devices characteristics			
Experiment 2	Study of Gate Drive circuits.	e circuits for variou	is power switching de	vices and analyse one	e of the	
Experiment 3	MATLAB simulation	n and verification of	f performance paramete	rs of 1-ph diode rectif	iers.	
Experiment 4	MATLAB simulation	n and verification of	f performance paramete	ers of 3-ph diode rectif	iers.	
Experiment 5	Power factor improv parameters of 1-ph c		ATLAB Simulink and v	verification of perform	ance	
Experiment 6			3-ph controlled rectifier	·S.		
Experiment 7			f performance paramete		-DC	
Experiment 8		n and verification of	f performance paramete	ers of isolated DC-DC		
Experiment 9	converters. Study of 1-ph and 2-	ph cycloconverters.				
Experiment 10	MATLAB Simulink techniques.	study of voltage sou	arce inverters and comp	-	ol	
Experiment 11	MATLAB Simulink	study of multilevel	inverters. (3-level, 5-le	vel)		
Task			k to build some conver		atory	

- Minimum eight experiments covering all the types of converters shall be simulated using MATLAB Simulink. •
- •
- Students shall also build converter prototype in the laboratory, test the same and analyse its performance. Students shall be guided to use advanced equipment (like oscilloscope) required for analysis & record of power • electronics circuits.

Government College of Engineering, Karad Third Year (Sem. – VI) B. Tech. Electrical Engineering EE 2607:Power Electronics Lab

Mapping of COs and POs

	e Outcomes (CO)
Studen	it will be able to
1.	Simulate converter circuits and analyse its performance.
2.	Build his/her own simple converter circuit in the laboratory and test the same.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1		2	3	3	3		1					1	3
CO 2		3	3	3	3	2	1					2	3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			10	10
Analyse			10	10
Evaluate			5	5
Create				
TOTAL			25	25

		Go	vernment College of Engineering,	Karad						
		Third Ye	ar (Sem. – VI) B. Tech. Electrical	Engineering						
			2 2608 : Electrical Machine Desig							
Teaching So	chen	ie		Examination Sch	eme					
Lectures				CT – 1	-					
Tutorials				CT – 2	-					
Practical		02Hrs/week		CA	50					
Total Credits		01		ESE	50					
				Duration of ESE	3 hrs					
Course Out										
Student will										
1.			cedure for design of AC & DC Machin							
2.			niques for design of electrical machine	•						
3.	Us	GUI in machine design.								
			Experiments							
Experiment	1	Prepare a flow chart and computer program for optimum design of a small transformer with								
		given specifications and constraints. Use of GUI (Graphical User Interface) may be a better								
		choice.								
Experiment	: 2	Prepare a flow chart and computer program for optimum design of starter for a DC motor								
		with given specifications and constraints.								
Experiment	: 3	Prepare a flow chart and computer program for optimum design of field regulator for a DC								
		motor with given specifications and constraints.								
Experiment	: 4	Prepare a flow chart and computer program for optimum design of a choke coil with given								
		specifications and constraints								
Experiment	5		and computer program for optimum de		former					
		<u>v</u> ,	ons and constraints. Use of GUI may b							
Experiment	6		and computer program for optimum de		er with					
.	7		und constraints. Use of GUI may be a b		1.0					
Experiment	t /		nd computer program for optimum des							
			s with given specifications and constra	unts. Use of GUI may be a	better					
.	0	choice	1		1					
Experiment	8		and computer program for optimum de	sign of a smallDC motor to	o be					
		used for a lab with g	ven specifications and constraints							

Government College of Engineering, I	Karad
Third Year (Sem. – VI) B. Tech. Electrical l	Engineering
EE 2608 : Electrical Machine Design	Lab

Mapping of COs and POs

Course Outcomes (CO)							
Student will be able to							
1.	Develop step by step procedure for design of AC & DC Machines.						
2.	Apply optimization techniques for design of electrical machine.						
3.	Use GUI in machine design.						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	3	2	3	1	2	2					2	3
CO 2	3	3	2	3	2	3							3
CO 3	3	3	3	2	3	2	1					2	3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			20	20
Analyse			15	15
Evaluate			15	15
Create				
TOTAL			50	50

		G	overnment College of Engineering, Karad						
		Third Y	Year (Sem. – VI) B. Tech. Electrical Engineering						
			EE 2609 : Electrical Workshop Lab						
			-						
Teac	hing Schem	е	Examination Sch	eme					
Lectu			CT – 1						
Tutor	ials		CT – 2						
Practi		2 Hrs/Week	CA	25					
Total	Credits	01	ESE	25					
-			Duration of ESE	03 Hrs					
	se Outcome								
	nts will be a								
1.			yout repairing of domestic and industrial wiring installation.						
2.		repare earthing inst							
3. 4.		-	ding of transformer, motors etc. t and test electronic circuits						
4. 5.			and for industrial applications.						
5. 6.		top solar PV/inver							
0.	Instan 1001		Course Contents		Hours				
Exp	eriment 1	Prenare test hoa	ard/extension board and mount accessories like lamp holders, v		nouis				
Lap		-	s, MCB, indicating lamp etc.	unious					
			various electrical accessories and their ratings						
		• Select correct size of board to mount specified accessories							
		• Position the accessories and mount them on board							
		• Wire up a	and test the test board/extension board						
Exp	eriment 2	-	tection of domestic/industrial wiring and repair						
-		0	d repair open circuit fault in domestic/industrial wiring						
		• Detect and repair short circuit fault in domestic/industrial wiring							
		• Detect and repair earth fault in domestic/industrial wiring							
		• Prepare f	lowchart for location and rectification of faults in wiring installation	IS					
Exp	eriment 3	0	of 415 V, 3 HP, 3-phase induction motor as per IE rules						
			interpret name plate details of motor						
			e the size of cable						
		 Select suit 	itable ICTP/MCB, DOL starter and other accessories						
			the size and length of conduit.						
			nnections, adjust the overload relay as per motor rating						
			stop the motor using starter						
Exp	eriment 4		pe earthing and measure earth resistance						
			he plate/pipe for earthing as per IS						
		-	he earthing pit as per required standard						
			e plate/pipe in earthing pit						
			the earth resistance using earth tester						
Exp	eriment 5		ling of small transformer						
			le the transformer core	1					
		• Measure and determine the size of winding wire for primary and secondary							
		winding							
			e dimensions of a bobbin and prepare the bobbin from su	iitable					
		materials							
			e primary and secondary windings using winding machine						
			e laminations and fasten them						
		 Termina 	te the winding ends in a terminal board						

	• Test the transformer for insulation, transformation ratio and performance	
Exposiment (*	
Experiment 6	 Practice on winding of 3-phase induction motor Dismantle the motor 	
	• Read, record and interpret the winding data for a 3-phase squirrel cage induction motor	
	Strip the old winding from the stator	
	Prepare and provide slot insulation Prepare and law the apile	
	 Prepare and lay the coils Make and connections and terminate the load wire 	
	Make end connections and terminate the lead wire Assemble and test the motor for performance	
E-manima and 7	Assemble and test the motor for performance	
Experiment 7	Make a printed circuit board for small electronic circuit	
	 Prepare the layout of PCB and transfer it on copper clad board Punch component mounting holes 	
	Punch component mounting holesPaint and etch copper clad board	
	 Paint and etch copper clad board Drill holes, mount and solder components 	
	 Drift holes, mount and solder components Test the circuit 	
Experiment 8	Control panel wiring for forward reverse control/star-delta starter/sequential control	
парет ппени о	of motors	
	Draw power and control circuit diagrams	
	 Design layout of control cabinet 	
	• Mount various control elements like contactors, relays, timers, circuit	
	breakers, sensors, measuring instruments etc.	
	 Mount DIN rail and arrange wiring by routing, bunching and tying 	
	• Test the control panel	
Experiment 9	Installation and connection of inverter/UPS with battery for domestic wiring	
-	• Select rating of inverter/UPS for given load and backup	
	• Select suitable place for installation of inverter and batteries in the house	
	• Install inverter, batteries and make connection to the load	
	• Test the installation under ON/OFF condition of supply	
Experiment 10	Connect solar panel for given AC and DC load	
	• Select suitable rating for solar panel, charge controller, batteries and	
	inverter, MCB, cables and connectors for given ac and dc load	
	Install solar panels on rooftop with proper tilt angle	
	Make connections using standard cables and connectors	
	Test the installation for performance	
Experiment 11	Energy Audit or Power Quality Audit of Commercial building/Small	
	industry/Hospital/Institute etc.	
	Visit the site and collect data	
	Analyse the data and energy consumption Becommand energy serving measures	
	Recommend energy saving measures Calculate energy saving total economic saving investment and payhock	
	• Calculate energy saving, total economic saving, investment, and payback	
	period Prepare energy audit report / power quality report	
Experiment 12	 Prepare energy audit report / power quality report Design experiments based on visit to pumping station/wastewater treatment 	
Experiment 12	plant/sewage treatment plant etc.	
	 Visit pumping station/wastewater treatment plant/sewage treatment plant 	
	 Collect data related to electrical installation 	
	 Decide ratings of transformer, motors, pumps, and other electrical 	
	equipment	
	Prepare and submit visit report	

<u>EE2609</u>

Government College of Engineering, Karad							
Third Year (Sem. – VI) B. Tech. Electrical Engineering							
EE 2609 :Electrical Workshop Lab							

Mapping of COs and POs

<u> </u>	
Cours	e Outcomes (CO)
Studen	nt will be able to
1.	Identify/locate faults and carryout repairing of domestic and industrial wiring installation.
2.	Plan and prepare earthing installation.
3.	Use winding machine for winding of transformer, motors etc.
4.	Prepare PCB layout, construct and test electronic circuits
5.	Design and wire up control panel for industrial applications.
6.	Install rooftop solar PV/inverter and batteries.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1
CO↓													
CO 1	3	2	2	1	2	2	2		1			2	3
CO 2	3	3	3	2	3	3	1	2			1		3
CO 3	3	3	2	2	3	2	1	3	3	1	1	2	3
CO 4	2	2	1	2	3	2	1						3
CO 5	3	2		1	2	3				1	2	2	3
CO 6	2	2	1	3	2	1	1	1	1			2	3

- Assessment for laboratory work will be based on skills acquired by students during the course.
 Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember				
Understand				
Apply			15	15
Analyse			5	5
Evaluate			5	5
Create				
TOTAL			25	25

		Gov	vernment College of Engineering, Karad					
		Third Ye	ar (Sem. – VI) B. Tech. Electrical Engineering					
			EE 2610: Technical Presentation					
Teac	Teaching Scheme Examination Scheme							
Lect	ures		CT – 1	-				
Tuto	Tutorials 01Hr/week		CT – 2	-				
Prace	Practical		CA	50				
Tota	l Credits	01	ESE					
			Duration of ESE					
Cou	rse Outcom	es (CO)						
Stud	ent will be							
1.	Familiar w	vith technical issues.						
2.	Able impr	ove presentation skills						
3.	Able to im	prove communication	skills and stage daring.					
		-	- · ·					
	1		Course Contents					
		Students will select a	any technical topic of their interest irrespective of branch. He/S	he will				
			Collect detail information about topic and make presentation be					
			l in-charge faculty.He/She is supposed to submit spiral bound re					
		his presentation.		<u>^</u>				

Government College of Engineering, Karad Third Year (Sem. – VI) B. Tech. Electrical Engineering EE 2610: Technical Presentation

Mapping of COs and POs

Course	Course Outcomes (CO)						
Studen	Student will be						
1.	Familiar with technical issues.						
2.	Able to improve presentation skills .						
3.	Able to improve communication skills and stage daring.						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO
CO↓													
CO 1	3	2	1	1	2	2	2		2	1		2	3
CO 2	2	1	1	2	3	1	1	2	2	2	1		3
CO 3	1			2	3	2	1	3	2	3	1	2	3

- 1. Assessment for laboratory work will be based on skills acquired by students during the course.
- 2. Continuous Assessment Sheet (CAS) will be maintained for each student.

Knowledge Level	CT 1	CT 2	CA	ESE
Remember			05	05
Understand			05	05
Apply			05	05
Analyse			05	05
Evaluate			05	05
Create				
TOTAL			25	25