Government College of Engineering, Karad

SCHEME OF INSTRUCTION & SYLLABI

Programme: Electronics and Telecommunication Engineering

Scheme of Instructions: Second Year B. Tech. in Electronics and Telecommunication Engineering

Semester – III

Sr.	Course	Course	Course Title	L	Т	Р	Contact	Course		EX	KAM SCH	EME	
No.	Category	Code					Hrs/Wk	Credits	CT-1	CT-2	TA/CA	ESE	TOTAL
1	HSMC	EX2301	Values and Ethics for	2	-	-	2	2	15	15	10	60	100
			Engineers										
2	BSC	EX2302	Mathematics – III	3	-	-	3	3	15	15	10	60	100
3	ESC	EX2303	Analog Circuits	3	1	-	4	4	15	15	10	60	100
4	ESC	EX2304	Electronic Devices and	4	-	-	4	4	15	15	10	60	100
			Materials										
5	PCC	EX2305	Digital Electronics	3	1	-	4	4	15	15	10	60	100
6	ESC	EX2306	Analog Circuits Lab	-	-	2	2	1	-	-	25	50	75
7	PCC	EX2307	Digital Electronics Lab			2	2	1			25	50	75
8	P/S/IT	EX2308	Industrial Training	-	-	2	-	1	-	-	25	25	50
			Total	15	2	06	21	20	75	75	125	425	700

L- Lecture

T-Tutorial

P-Practical

CT1- Class Test 1

TA/CA- Teacher Assessment/Continuous Assessment

I -I factical

CT2- Class Test 2

ESE- End Semester Examination (For Laboratory End Semester performance)

Course Category	HSMC (Hum., Soc. Sc, Mgmt.)	BSC (Basic Sc.)	ESC (Engg. Sc.)	PCC (Programme Core Courses)	PEC (Programme Elective Courses)	OEC (Open Elective courses from other discipline)	MCC (Mandatory Courses)	Project / Seminar / Industrial Training
Credits	02	03	09	05				01
Cumulative Sum	05	21	25	05				01

PROGRESSIVE TOTAL CREDITS : 37+20 = 57

Government College of Engineering, Karad SCHEME OF INSTRUCTION & SYLLABI

Programme: Electronics and Telecommunication Engineering

Scheme of Instructions: Second Year B. Tech. in Electronics and Telecommunication Engineering

Semester - IV

Sr.	Course	Course	Course Title	L	Т	Р	Contact	Course		EX	KAM SCH	IEME	
No.	Category	Code					Hrs/Wk	Credits	CT-1	CT-2	TA/CA	ESE	TOTAL
1	OEC	EX2401	Transducers and Measurement	3	-	-	3	3	15	15	10	60	100
2	ESC	EX2402	Signals and Systems	3	I	-	3	3	15	15	10	60	100
3	PCC	EX2403	Analog Communication	3	-	-	3	3	15	15	10	60	100
4	PCC	EX2404	Microcontroller and Interfacing	3	-	-	3	3	15	15	10	60	100
5	PCC	EX2405	Network Analysis and Synthesis	3	-	-	3	3	15	15	10	60	100
6	OEC	EX2406	Transducers and Measurement Lab	-	-	2	2	1	-	-	25	-	25
7	PCC	EX2407	Analog Communication Lab	-	-	2	2	1	-	-	25	25	50
8	PCC	EX2408	Microcontroller and Interfacing Lab	-	-	2	2	1	-	-	25	25	50
9	PCC	EX2409	Signal, Network Analysis and Synthesis Lab	-	-	2	2	1	-	-	25	25	50
10	MCC	EX2410	Environmental Science	2	-	-	2	Audit	15	15	10	60	100
11	HSMC	EX2411	Technical Presentation	-	1	-	1	1			25	-	25
			Total	17	01	08	26	20	90	90	185	435	800

Lecture--L

T-Tutorial

P-Practical

CT1- Class Test 1

TA/CA- Teacher Assessment/Continuous Assessment

CT2- Class Test 2

ESE- End Semester Examination (For Laboratory End Semester performance)

Course Category	HSMC (Hum., Soc. Sc, Mgmt.)	BSC (Basic Sc.)	ESC (Engg. Sc.)	PCC (Programme Core courses)	PEC (Programme Elective courses)	OEC (Open Elective courses from other discipline)	MCC (Mandatory Courses)	Project / Seminar / Industrial Training
Credits	01		03	12		04	Yes	
Cumulative Sum	06	21	28	17		04		01

PROGRESSIVE TOTAL CREDITS : 57+20 =77

			Governmen	t College of Engi	neering, Kar	ad		
		Second Year	B. Tech. Elect	ronics and Teleco	ommunicatio	on (Semester – III)		
			EX2301: V	/alues and Ethics	for Engineers	5		
Teachi	ng Sche	me				Examination Sch	eme	
Lecture		02 Hrs/week				CT – 1	15	
Tutoria		00 Hrs/week				CT – 2	15	
Total C	redits	02				ТА	10	
						ESE	60	
~						Duration of ESE	02 Hrs	30 Min
		nes (CO)						
Student			1					
	-	sic universal hun						
		<u> </u>	condition of dile					
		rect moral ethica	hts and ethical co	onducts.				
4. EXI		rect moral etnica	li benavior.	Course Conten	ta			Hours
Unit 1	II	on Volues Mer	al value athias Ir			ning vinturg Dagnag	t for	(03)
Unit I				ing, Honesty, Cour		ning, virtues, Respec	t for	(03)
				ce, Challenges in th				
Unit 2						y of moral issues, T	vnes of	(04)
011102						(theories), Consens		(01)
						Theories about righ		
				erest, Customs, Rel				
		study: Choice o		, , ,				
Unit 3	Engir	neering as Socia	l Experimentati	ion: Engineering as	experimentati	on, Engineers as res	ponsible	(05)
						outlook on law,		
						alysis, Assessment o	of safety	
			•	is, Collegiality and	• •	0 0		
				Occupational crime,	Human rights.	Employee rights, (C	lase	
		: The challenger)						
Unit 4						dilemmas, Steps in		(04)
						ion Making as Desig		
	•	•	thics, Utilitariani	sm, Virtue Ethics, S	Self-Realizatio	n Ethics, Ethical Ego	oism,	
Unit 5		Ethical Theory	agge Whighle Die	min a Definition	lanal Cuidalin	es, Protecting Whistl	-	(04)
Unit 5				e		0		(04)
						y and Research Integ ntegrity, Bias and Se		
				ts, Giving and Clai		integrity, bias and se	11-	
	-	-	•	-	-			
Unit 6						l ethics, Computer et		(04)
						ngineer as expert wit	ness,	
Text Bo		eers as advisors	in planning and	policy making, Mor	ral leadership,	Codes of ethics		
			ofossional Ethios	and Human Value	»" Nous Ago L	ternational (P) Limi	ad Dubli	
(U	nit:1, 2,	3 & 6)			ý C			
			chinzinger, "Ethi	cs in Engineering"	, McGraw-Hill	, New York 1996. (U	Jnit: 4 &	5)
Referen								
				w Age International				
			h & V. S Senthil Hall of India Lte		g Ethics (inclu	ding Humna Values)	", Easter	n
				all of India, Pvt. Lt	d. New Delhi			
Useful								
		tel.ac.in/course	es/109/104/109	104068/	1	1		1
	•	tel.ac.in/course						
<u></u>	<u>411,154</u>		0,1101000311					

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO↓														
CO 1	-	-	-	-	-	-	-	-	-	3	-	1	-	-
CO2	-	-	-	-	-	-	-	1	-	2	-	-	-	-
CO 3	-	-	-	-	-	-	-	-	-	3	-	1	-	-
CO 4	-	-	-	-	-	-	-	2	-	3	-	-	-	-

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	5	3	20
Understand	10	5	3	20
Apply	-	5	4	20
Analyze	-	-	-	-
Evaluate	-	-	-	-
Create	-	-	-	-
TOTAL	15	15	10	60

			Government Co	llege of Enginee	ring, Kara	d		
	Sec	cond Year B. 7	Fech. Electronics an				nester – II	I)
				2: Mathematics-				
Teach	hing Sche	me				Examination	Scheme	
Lectur	res	03 Hrs/week				CT – 1	15	
Tutori	ials	-				CT – 2	15	
Total	Credits	03				ТА	10	
						ESE	60	
						Duration of ES	SE 02 Hrs	30 Min
Cours	se Outcor	nes (CO)						
Student	t Will be a	able to						
1. T	'o obtain F	Fourier Transform	n to solve differential	application and ap	oply to signa	l processing.		
			differential equations				dents to	
			s for given situations t					
		<u> </u>	ch would enable stude	v	ering solutio	ns for given situ	ations	
4 T	'o obtain e	xpertise in vecto	or integral calculus and	l its applications				
			С	ourse Contents				Hours
Unit			r Differential Equati					(5)
	L-C-H	R Circuit, Applic	ation of R-L,R-C,R-L	-C Circuit in time	domain usir	ng differential ec	quation.	
	Coup	led Electrical Ci	rcuits, Spring-Mass sy	vstem.				
Unit	2 Parti	al Differential I	Equations (PDE):					(10)
Cint			linear Partial Differen	tial Equation Form	nation (PDE) Lagrange's eq	nuation	(10)
			ntial Equations of seco				· ·	
			DE. Applications of Pa				5, Linear	
			ation, one-dimension					
		sional heat equa		ai neat equation, 5	field y state s	oration of two-		
		•						
Unit		ier Transform:						(6)
			e integrals, Fourier sin	ne transform, Four	rier cosine tr	ansform, Inverse	e Fourier	
	transf							
Unit 4			ribution Theory					(9)
			ility and basic proper					
		-	lue of random variab				-	
			nction & Probability		, Probability	v distribution f	for random	
	variał	oles, Binomial, F	Poisson and Normal di	stributions.				
Unit	5 Corr	elation and Reg	ression:					(6)
	Corre	lation and regree	ssion analysis, Linear	regression, multiva	ariable regre	ssion .Analysis	of	
	variar	nce, Least square	e curve fitting	-	-			
Unit	6 Vecto	or Integral Calc	ulus:					(6)
		0	Theorem, Stokes	and Gauss The	orem and ap	plications of all	above	(-)
	theore		,		1	L		
Toy 1	Books				<u> </u>			
		varia "A duas	ed Engineering Mather	motion" OthEdition	n Wilay Eas	tom I to Mussel		
	Prakashan		rtikar, "A text book of	Applied Mathema	aucs. voi. I,	11 and 111, v10	yarun Orma	
			neering Mathematics"	S Chand nublicatio	ons Fiftpont	h revised edition	n2006	
			of Engineering Mathe					d
	Edition	Jana TEALUOUK	or Engineering wattle	manes new Age	memanona			iu
	ence Boo	ks						
			neering Mathematics"	Khanna Publicati	ion. New De	lhi		
		ma, "Operations		, ishanna i uonoati				
			earning, "Mathematic	al Methods of Scie	ence and End	vineering (Aide	d with	
	MATLAB				chee and Elly		u vv1t11	
			ey, Calculus and Anal	vtic gemetry 9th F	Edition Pear	son Reprint 20	02.	
-• (-,, carearao ana mia	,		,		

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	3	2	2	2	2	2	-	-	-	-	-	-	1	-	-
CO 2	2	1	2	1	1	-	-	1	-	-	-	-	1	-	-
CO 3	1	2	1	2	2	1	-	-	-	-	1	1	2	-	-
CO 4	1	2	1	2	2	1	-	-	-	-	1	1	1	-	-

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	-	5
Understand	5	-	5	35
Apply	5	5	5	10
Analyze	5	5	-	5
Evaluate	-	5	-	5
Create	-	-	-	-
TOTAL	15	15	10	60

				Gov	ernment (College o	f Enginee	ring, Kara	ad		
		Seco	ond Year B. 1		lectronics	and Tele	communi	ication En	gineering (Sem	ester – III)
					EX23	303 : An	alog Circu	ıits	•		
		g Scher							Examination S		
	tures		03 Hrs/week						CT – 1	15	
	orials		01 Hrs/week						CT – 2	15	
Tota	al Cre	edits	04						ТА	10	
									ESE	60	
									Duration of ES	E 02 Hrs	30 Min
			tes (CO)								
		ill be a					T				
	•		ous semicondu					1:0			
			DC and AC ar				0 0	iplifier.			
			ent amplifier co					· 1 ·		1' C'	
4.	Ana	lyze the	working of var	rious circ	cuits for dif			signed using	g operational amp	olifier.	TT.
¥7 4	4.4	D ¹ -	T (1) (2)	• .		Course (ontents				Hours
Uni	it 1		r Junction Tr				·· .	1			(6)
		-					•		tics. Concept of I	DC and AC	
		load II	ne and biasing,	, bias stat	bilization, t	thermal rul	naway, thei	mal stabiliz	cation.		
T	4.0		C Amalautia								(0)
Uni	IT 2		C Analysis:				Andalina.	The CE Tw	anaistan Madal - C	E Emilton	(8)
									ansistor Model, C		
									on, Darlington C		
			•		• •		odel, Hybr	id π Model	. Low and High-	Frequency	
		Respo	nse of BJT Am	ipiifier, N	viller Theo	orem					
Uni	4 2	Field	Effect Transist	tora							(9)
Uni	IT S						Character	istics EET 1	biasing Fired F	ling and	(8)
									biasing – Fixed-E		
		and vo	onage divider bi	masing to	I JEL ANU	i blasnig o	IMOSFEI	, miroducio	on to CMOS, HM	105.	
Uni	it /	FFT /	Amplifiers:								(8)
UII	11 4		-	Indal Fiv	rad Bing S	alf Rigg or	d Voltago	Driver Con	figuration, E-MO	SEET	(0)
									on. Low and High		
						ET VOltag		configuratio	on. Low and ringi	1	
T T 4	4.5		ency Response		impinier.						
Uni	it 5	-	tional Amplifi				•			1 .	(6)
									ncept, closed and	open loop	
								ng Amplifie	er, Non inverting		
		-	fier, Voltage-fo		Comparato	or, voitage	Buiter				
Uni	it 6	-	mp Application			_					(6)
			0 1		ce amplifiei	r, Integrato	or, Differen	tiator, Instr	umentation ampli	fier, V to I	
			o V convertor.								
			tudy: Feedbac	ck ampli	fiers, Mult	tistage am	plifiers				
	t Bo										
1.									—11th edition.		
2.				grated Ci	ircuits by R	Ramakant A	A. Gayakwa	ad, Prentice	Hall of India, 4T	Th Edition,2	000.
Ref		ce Book									
1.	Eleo	ctronic of	devices Thomas	as L. Floy	yd. — 9th e	edition. Pea	arson Educ	ation 2012			
2.	Eleo	ctronic	Devices and Cir	ircuits by	David A.	Bell, OXF	ORD, 5th I	Edition, 200	8		
3.									ll, 2 nd Edition, 20	02.	

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	1	2	2	1	-	-	-	-	1	-	-	1	2	-	-
CO 2	1	1	2	2	-	-	-	-	-	-	-	1	3	-	-
CO 3	1	2	-	2	-	-	-	-	1	-	-	-	2	-	-
CO 4	1	2	1	-	-	-	-	-	-	-	-	1	1	-	-

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	-	-
Understand	10	5	5	15
Apply	5	5	5	25
Analyze	-	5	-	20
Evaluate	-	-	-	-
Create	-	-	-	-
TOTAL	15	15	10	60

			Government Co		-			
	Sec	ond Year B. 1	Ex 2304 : Electronics				mester – III])
Teach	ing Sche	me	EA 2304 : Elect	rome Devices an	iu materia	S Examination	Scheme	
Lectur		04 Hrs/week				CT – 1	15	
Tutoria		-				CT – 2	15	
Total C	Credits	04				ТА	10	
						ESE Dention of F	60	20 M.
Cours		nes (CO)				Duration of E	SE 02 Hrs	30 Min
	Will be a							
			and magnetic propert	ies of electronics e	ngineering r	naterials		
			the given type of ma					
an	d its imp	act on environm	and the synthesis of l ent, in the context of	electronics engined	ering.		d their applica	ation
4. Ur	nderstand	l the application	of the semiconductor	materials viz. dioc	de. & Integra	ted Circuits.		**
TT \$4 1	. G	· · · · · · · · · · · · · · · · · · ·	4					Hours
Unit 1	Introc Chara	acteristics, Dop	l Structure, Band M ing Processes, Devi Metallization, Oxidati	ces Using Semi	conductors,	Concept of	Large scale	(8)
	•		ing, Packaging and P			,		
Unit 2	2 Diod	e Circuits :						(8)
	such	as regulated pov	tions; Datasheets of c	lifferent diodes su	ch as LED, S			
Unit 3	3 Ontic	cal Materials:						(10)
	Emiss and I (CD)	sion of Continue LED Materials, S	ous Radiation and it's Spontaneous emission al Photoemission, Inte onic Systems.	n & stimulated em	nission, Case	study – A Co	ompact Disc	()
Unit 4	Introc Resis Introc mater	luction, Techniq tors, Transparen luction to MEM	c Materials and Nan- ues for Preparation of t and Conductive Thin Is, Nano, Bio, Smar rial, Techniques for H als.	f Thin Films, Thin n Films ,Thin Film rt and Functional	Magnetic M materials, 1	laterials. Nano fiber ma	terial, VLSI	(10)
Unit 5	Funda Mater Hard Funda	rials , Dilute Ma Disk Drive. amentals of Die	ic Materials : Magnetic Materials of gnetic Semiconductor lectric Materials, Caj s, Case Study – Mater	(DMS), Case Stu pacitors, Ferroelec	ıdy – Materia tric Materia	als in Magnetic	Recording,	(8)
Unit 6	Positi Colpi	ve feedback, H tts, phase shift	rator & Timing Circu Barkhausen criterion and Wien's bridge U (Monostable, Bistable	for oscillations, Jsing Transistors			•	(8)
Text B	Books							
1. E	lectronic		cuit theory - Robert L					
			grated Circuits by Ran					
8	1265214	32, Wiley India				amaniam, 2010), ISBN-13: 9	9/8-
			ngineering Materials'	, Prentice hall of I	ndia, India			1
	ence Boo		engadam, S., "An Int	roduction to Fleat	rical Enging	ring materiala	'4th Edn 200	<u></u>
1 , U		ai ailu S. Thiru	All Int		rical Eligine	ang materials	-rui Euli, 200	+

2.	Kenneth G. Budinski,, "Engineering Materials: Prentice Hall of India, New Delhi
3.	Wei Gao, Zhengwei Li, Nigel M. Sammes "An introduction to electronic materials for engineers", 2nd edition,
	,World scientific publication
4.	V Raghavan, "Materials Science and Engineering: A First Course, 5th Ed, 2004, PHI India
5.	J. Millman & C.Halkias, "Electronic devices & circuits", Tata McGraw Hill Publication.

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	1	2	2	1	-	-	-	-	1	-	-	1	-	-	-
CO 2	1	1	2	2	-	-	-	-	-	-	-	1	2	1	-
CO 3	1	2		2	-	-	-	-	1	-	-	-	2	1	-
CO 4	1	2	1	-	-	-	-	-	-	-	-	1	1	1	-

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	-	-
Understand	10	05	05	15
Apply	05	05	05	25
Analyze	-	05	-	20
Evaluate	-	-	-	-
Create	-	-	-	-
TOTAL	15	15	10	60

			Government College of E				
		Second Year B. 7	ech. Electronics and Telecon		Engineering (Semes	ster – III)
Tee	- alt in	- Cabarra	EX2305: Digital I	Electronics	Examination Sch		
	tures	g Scheme 03 Hrs/week			CT – 1	15	
	orials				CT = 1 CT = 2	15	
	al Cre				TA	10	
					ESE	60	
					Duration of ESE	02 Hrs	30 Min
		Outcomes (CO)					
		ill be able to					
			pply it to solve real life problems				
			nent combinational logic circuits				
3.			ment sequential logic circuits.				
4.	Exar	nine various memory a	nd programmable logic devices.	4 4			TT
Un	:4 1	A mithmatia Onamatic	Course Con n and Minimization Technique				Hours (7)
UI		Number Conversion	Arithmetic's operation, Logic, De Morgan's Theorem, Prin	gates, Minimi			(7)
Un	it 2	Look Ahead adder,	ler, Half Subtractor, Full Subtra Serial Adder/Subtractor, BCD ker & parity generators ,code co	adder, Multiple	xer, Demultiplexer, I	Decoder,	(7)
Un	it 3	triggering, Level Trig Design of Synchrono	R, JK, D, T, and Master Slave, C gering. Synchronous and Asynch us counters:- state diagram ,State counter. Shift registers, Universa	ronous Counter table ,State min	s imization , Moore/Me		(8)
Un	it 4	EPROM, EEPROM, Programmable Logic	ory expansion, Classification of r EAPROM, RAM, RAM organiza Devices: – Programmable Logic nentation of combinational logic	ation, Write oper Array (PLA), Pr	ation, Read operation.	ogic	(7)
Un	it 5	gates, TTL NAND C	ificance and Types, Characteris Gate, Emitter Coupled Logic (Ed of Different Logic Families.				(5)
Un	it 6	and Maximum mode modes. Peripherals interfaci	microprocessor: diagram of 8086 Architecture a s. Read and Write bus cycle ng with 8086 and applicatio 255.8087 Math coprocessor.	Instruction set a	nd programming, Ad	dressing	(10)
Tut	torial	S					
_ u u u		Futorials based on abor	ve syllabus.	I	I		
- ut	t Bo	oks	•				
		Isin "Madam Disita	Electronics", 4th edition, Tata N	IcGraw - Hill Ed	Jucation 2010		
Tex 1.							
Tex 1. 2.	M. 1	Morris Mano, "Digital	Design", Pearson Education (3rd	Edition) (Unit 1	.,2,3,4)		
Tex 1.	M. 1	Morris Mano, "Digital	Design", Pearson Education (3rd nentals of digital circuits", 1st ed	Edition) (Unit 1	.,2,3,4)		
Tex 1. 2.	M. 1 A. A	Morris Mano, "Digital Anand Kumar, "Fundar		Edition) (Unit 1 lition, PHI public	.,2,3,4) cation, 2001.	Pvt. Ltd.,	2011

1.	Anil K. Maini, "Digita	l Electronics p	principles and	Integrated Circ	uits". Wilev I	Publications.

2. Microprocessor 8086 data sheets

3. Andrew Rood , Douglas V. Hall "Microprocessors and Interfacing: IBM Version: Programming and Hardware (McGraw-Hill International Editions: Computer Science Series)" Paperback – Import, 1 March 1992

4. <u>Youzheng Liu, Glenn A. Gibson</u>"Microcomputer Systems: The 8086/8088 Family : Architecture, Programming, and Design" Prentice-Hall, 1986

Mapping of COs and POs

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	1	-	-	-	-	-	-	-	1	1	-	1	1	1	2
CO 2	2	2	2	2	3	-	-	-	-	-	-	2	2	2	3
CO 3	3	3	3	3	3	-	-	-	1	2	-	-	2	2	2
CO 4	3	3	3	3	3	-	-	-	-	2	-	3	3	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	-	05
Understand	05	-	05	35
Apply	05	05	05	10
Analyse	05	05	-	05
Evaluate	-	05	-	05
Create	-	-	-	-
TOTAL	15	15	10	60

		Go	vernment College of Eng	gineering, Karad			
	Secon	d Year B. Tech. l	Electronics and Telecom		eering (Sen	nester – III)	
Laha	natary Caba		EX2306 : Analog Ci		Examination	Cabama	
Practi	ratory Sche	2 Hrs/week			TA/CA	25	
	Credits	1			ESE	50	
	se Outcome	s (CO)					
Studen	t Will be abl	e to					
1.			different electronic devices s		•		
2.			ons of BJT and FET for prac	tical applications.			
<u>3.</u> <u>4.</u>		te op amp for practi		a for prostical appli	otiona		
4.	Construct	and test amprimer ci	cuits and interpret the result List of Ex		cations.		
Expe	riment 1	Study of V-I chara clippers and clamp	cteristics of PN junction dio		of diode in rec	ctifiers,	
Expe	riment 2	Configuration and	and output characteristics find Input Resistance (1) or (β) of the given transistor.	Ri), Output Resista			
Expe	riment 3	Compare the relati the stability factor	onship between IC & ICO fo for each case FET.	or Self-Bias and Fixe	ed Bias Circui	ts and find	
Expe	riment 4	(i) Observe the pha(ii) Measure mid b	ge RC coupled CE amplifien use difference between input and gain ncy response and determine	and output waveform			
	riment 5 riment 6	drain resistance (rFET.b) Obtain the free measure the voltage	Transfer characteristics of d), amplification factor (μ) quency response of the si e gain and bandwidth of amp	and Trans-Conduct ngle stage Common plifier.	tance (gm) o	f the given plifier and	
Expe	riment 7	on frequency responses	nse. put offset parameters of an o	operational amplifier	and compare	measured	
		parameters with m	anufacturers specifications.				
Expe	riment 8		p practical application using o for a specified gain, plot th				
Expe	riment 9	Design and setup a gain and verify the	summing and difference an output.	plifier circuit with o	op amp for a s	pecified	
Expe	riment10		nd verify the response of a) Hz frequency. b) Differenti quency.				
-	riment11	•	RC coupled amplifier and n		C		
	riment12		he operation of astable and r r experiments may be condu			5 IC timer.	
List o Subm	of nission						
	$\frac{1}{2}$	Total number of E Total number of sh					
	2	Course Project wo					
	4	Seminar report: NA					
	5	Field Visit Report:					
		1					

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	1	2		1	-	-	-	-	2	-	-	1	3	1	-
CO 2	1				-	-	-	-	2	-	-		3	1	-
CO 3	2	1	3		-	-	-	-	1	-	-	2	3	1	-
CO 4	1	2	1	-	-	-	-	-	1	-	-	1	3	1	-

Knowledge Level	CA	ESE
Remember	-	-
Understand	5	15
Apply	7	5
Analyze	8	10
Evaluate	-	10
Create	5	10
TOTAL	25	50

		Go	vernment College of E	ngineering, Karad						
	Secor		Electronics and Teleco	mmunication Engin	neering (Sem	nester – III)				
			EX2307 : Digital Ele							
	ratory Sche				Examination					
Practi		2 Hrs/week			TA/CA	25				
	Credits				ESE	50				
	se Outcome t Will be abl									
<u>1.</u>			circuits and verify their fu	inctionalities.						
2.	Apply the	design procedures to	o design basic sequential c	ircuits.						
3.	Construct	digital circuits used	for customized application	18.						
4.	Apply the	e fundamentals of as	sembly level programming	g of microprocessors an	nd microcontr	oller				
	•		List of H	Experiment						
Expe	riment 1	Realization of logi ICS & verify its tr	c gates OR, AND, NOT, Nuth tables.	NOR, NAND, EX-OR,	, EX-NOR gat	es using				
Expe	riment 2	Design code conve	ertors (Binary To Gray & Y	Vice-Versa).						
Expe	riment 3	Prototyping of source to destination communication using MUX (IC74151) and DEMUX(IC 74138).								
Expe	riment 4	Realization of IC7	483 as parallel adder and s	substractor.						
Expe	riment 5	Design and build 4	Design and build 4-bit, 8-bit comparator using IC 7485.							
Expe	riment 6	Realization of all modes of universal shift register using IC 7495.								
Expe	riment 7	Design ring and Johnson counter using flip-flops.								
Expe	riment 8	Design 4-bit UP/DOWN synchronous counter using IC.								
Expe	riment 9	-	Arithmetic operations using 8086 microprocessor: Multi-byte Addition, Subtraction, Multiplication, Division.							
Expe	riment10	Sorting given strin	g in Ascending, Descendi	ng order using 8086 m	icroprocessor					
Expe	riment11	Programmable Per	ipheral Interface-8255. In	terfacing switches and	LEDs.					
Proje	ct Work	Mini project based	on digital circuits/Microp	processor 8086.						
		Note: Three to fou	r experiments may be con	ducted using simulator	r.					
List o Subr	of hission									
~	1	Total number of E	xperiments: 11							
	2	Total number of sh								
	3	Course Project wo	<u>^</u>							
	4	Seminar report: NA								
	5	Field Visit Report:	NA							

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	2	-	-	-	-	-	-	-	-	-	2	-	1
CO 2	3	-	3	3	-	-	2	-	-	2	-	-	2	-	1
CO 3	3	1	3	3	-	-	2	-	2	2	-	-	3	-	-
CO 4	2	2	2	-	-	-	-	-	-	-	-	-	1	-	1

Knowledge Level	CA	ESE
Remember	-	-
Understand	5	15
Apply	10	10
Analyze	5	10
Evaluate	-	5
Create	5	10
TOTAL	25	50

			Government Coll					
	Second	d Year B. Te	ch. Electronics and			ring (Semester	– III)	
T	a akim - C	alsone -	EX 2308 :	Industrial Train	ning			
Practical	aching S	2 Hrs/week				Examination TA		1e 25
Total C		01				ESE		25 25
Course O		÷ -				LGL		25
Student								
1. Con	prehen	d the knowle	dge gained in the cou	irse work				
			iate techniques, resor		ern engineerir	ng tools.		
			to an industrial envi	ronment				
4. Und	erstand	maintenance						
T 1 1	F (urse Contents	111 1 (· •	Hours
Task 1	Execut	10n scheme I	ndustrial training of nd it's assessment wi	two weeks shou	lld be done al	ter semester-II	1n load	
			an be assigned to the		i oli report su	Unintied. WOIK	Iuau	
Task 2			The students have to		lustrial traini	ng of two week	rs in an	
			dealing with Electro					
			after second semeste				-	
			ter. The students hav	-				
			ts of the report before		A	U U		
			ternal evaluation wi					
	authent	ticity of cont	ents of the report and	d award the mai	rks at the end	l of the semest	er. It is	
	expecte	ed that stude	nts should undertake	e small assignm	nent or work	related to any	of the	
	course	related aspec	xt.					
	_							
			compilation of wo					
			ogies and layout, Ir					
			nent functions, Safe					
		•	Processes and tools			-		
			ious departments, Pr as identified.	oduct flow, Test	ting and quali	ity control chec	cks and	
Task 3			g Report Format:					
			ents in one group, th	ree groups shall	work under	one Faculty.		
			ip should have differ					
			e of 20 to 30 pages.		0	Γ		
	-	-						
			ation of the report the	e following forn	nat should be	strictly follow	ed.	
	•	Size: Trimn						
	-	Margin: 1.00						
		om Margin:						
		Margin: 1.5						
	•	t Margin: 1.0						
			New Roman 12 Poin	nt. Font				
		Spacing: 1.5			4 T N	n Daves - v		
	-		ight Aligned at Foot		u. 11mes Nev	v Koinan		
		tificate:	New Roman, 14 Poi	in., dolu face				
			attach standard forr	nat of Cortificat	a as dosoribo	d by the dense	rtmont	
			be awarded to batch			•		
			Guide, Head of Depa				snoulu	
		-	rt should be docume		-	ails like		
		me of Indus		incu as one cha	pier with det	ans me		
			with completed train	ing certificate"				
			dustrial training is co		udents have t	o present their	renorte	
			uusutai training is CC	mpieteu Ali Sti	uuents nave li	o present them	reports	
	individ	lually.						

$\begin{array}{c} \text{PO} \rightarrow \\ \text{CO} \downarrow \end{array}$	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO 8	PO 9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	3	-	1	-	-	1	-	1	2	2	-	2	-	-	2
CO 2	2	-	-	-	-	-	-	-	-	-	1	-	1	-	-
CO 3	3	-	1	-	-	2	-	2	1	3	-	1	1	1	2
CO 4	3	-	-	-	-	-	-	-	2	3	2	-	-	-	2

Knowledge Level	CT 1	CT 2	CA	ESE
Remember	-	-	08	-
Understand	-	-	10	08
Apply	-	-	07	10
Analyze	-	-	-	07
Evaluate	-	-	-	-
Create	-	-	-	-
TOTAL			25	25

Unit 1 Passive Electrical Transducers: (f) Resistive Transducers- Resistance Thermometer, Resistive displacement, Resistive strain, Resistive Pressure, Resistive Optical radiation Transducers Inductive Displacement Transducers, Eddy current type Inductive Transducers- Capacitive Transducers. Capacitive Moisture Transducers: (f) Capacitive Moisture Transducers. Capacitive Moisture Transducers. (f) Unit 2 Active Electrical Transducers. Capacitive Moisture Transducers. (f) Piezoelectric Transducers. Piezoelectric Phenomena, Common Thermocouple system. (f) Piezoelectric Transducers. Piezoelectric Force Transducers. (f) Thermo elective Transducers. Piezoelectric Force Transducers. (f) Magnetostrictive Transducers. Piezoelectric Force Transducers. (f) Transducers. Magnetostrictive Acceleration Transducers. Magnetostrictive Force Transducers. (f) Hall effect Transducers. Digital Tachometer, Sound Transducer, Photoevoltaic transducer. (f) (f) Unit 3 Qualities of Measurements and Measuring Instruments: (f) Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. (f) Basic LCR B				Government College of Engin	.		
Teaching Scheme Examination Scheme Lectures 03 Hrs/week CT - 1 15 Tutorials - CT - 2 15 Total Credits 03 TA 10 ESE 60 ESE 60 Course Outcomes (CO) Duration of ESE 02 Hrs 30 N Student Will be able to - - 1. Classify and use transducers in applications. - 2. Analyze fifterent sensors to develop applications. - 3. Analyze fifterent sensors to develop applications. - 4. Design DAS systems for practical applications. - Course Contents Ho - Inductive Transducers- Inductive Transducers, Inductive Displacement, Resistive erransducers, Capacitive Transducers. Inductive Transducers. - Diaditive Misture Transducers - Piezoelectric Phenomena, Common Thermocouple system. - Piezoelectric Transducers - Piezoelectric Phenomena, Magnetostrictive Force Transducers, Piezoelectric Scharostrictive Phenomena, Magnetostrictive Force Transducers, Piezoelectric Scharostrictive Phenomena, Magnetostrictive Force Transducers, Bagnetostrictive Transducers. - Magnetostrictive Transducers			Second Year B. T			nester – IV)	
Lectures 03 Hrs/week CT - 1 15 Tutorials - CT - 2 15 Total Credits 03 TA 10 Exerce Outcomes (CO) - Duration of ESE 02 Hrs 30 N Student Will be able to - - - - 1. Classify and use transducers in applications. - - - 3. Analyze different sensors to develop applications. - - - 3. Analyze different sensors to develop applications. - - - 4. Design DAS systems for practical applications. - - - 1. Passive Electrical Transducers: Course Contents Ho - 1. Passive Optical radiation Transducers. Lanctive Transducers. -	Tee	ahin	a Sahama	EX2401: 1 ransducers and r		Sahama	
Tutorials - CT - 2 15 Total Credits 03 TA 10 ESE 60 Duration of ESE 02 Hrs 30 N Student Will be able to 1. Classify and use transducers in applications. 2. 1. Classify and use transducers in applications. 3. Analyze frequency using different analyzer. 4. 2. Analyze frequency using different analyzer. Ho 10 4. Design DAS systems for practical applications. 1. Classify eransducers- Resistance Thermometer, Resistive displacement, Resistive strain, Resistive Pressure, Resistive Optical radiation Transducers Ho 1. Passive Electrical Transducers: Inductive Transducers. Inductive Transducers. Capacitive Moisture Transducers. Capacitive Moisture Transducers. Capacitive Moisture Transducers. Capacitive Moisture Transducers. Unit 2 Active Electrical Transducers. Prezoelectric Phenomena, Magnetostrictive Force Transducers., Prezoelectric Acceleration Transducers., Magnetostrictive Torsion Transducers. Magnetostrictive Torsion Transducers. Magnetostrictive Transducers. Phezoelectric Force Transducers. Magnetostrictive Phenomena, Magnetostrictive Force Transducers.							
Total Credits 03 TA 10 ESE 60 60 Course Outcomes (CO) Duration of ESE 02 Hrs 30 N Student Will be able to 1 Classify and use transducers in applications. 1 1. Classify and use transducers in applications. 1 1 Classify and use transducers in applications. 1 3. Analyze frequency using different analyzer. 1 1 Design DAS systems for practical applications. 1 4. Design DAS systems for practical applications. 1 1 Resistive Transducers: Resistance Thermometer, Resistive displacement, Resistive strain, Resistive pressure, Resistive Optical radiation Transducers, Inductive Displacement Transducers, Eddy current type Inductive Transducers. Capacitive Transducers. Capacitive Transducers. 10 10 Active Electrical Transducers: 1 1 1 1 11 A Active Electrical Transducers: 1							
ESE 60 Course Outcomes (CO) Duration of ESE 02 Hrs 30 N Student Will be able to 1. Classify and use transducers in applications. 2. Analyze different sensors to develop applications. 3. Analyze frequency using different analyzer. 4. Design DAS systems for practical applications. 1. Intervent and the entity of the entit						-	
Course Outcomes (CO) Student Will be able to 1. Classify and use transducers in applications. 2. Analyze frequency using different analyzer. 4. Design DAS systems for practical applications. 3. Analyze frequency using different analyzer. 4. Design DAS systems for practical applications. 5. Analyze frequency using different analyzer. 4. Design DAS systems for practical applications. 6. Unit 1 Passive Electrical Transducers: Resistive Optical radiation Transducers Inductive Transducers- clapacitive Thickness Transducers, Capacitive Displacement, Resistive Strain, Resistive Optical radiation Transducers, Capacitive Displacement Transducers, Capacitive Moisture Transducers. Capacitive Moisture Transducers: Curve Electrical Transducers: Thermo elective Transducers: - Piezoelectric Phenomena, Common Thermocouple system. Prezoelectric Strain Transducers, Piezoelectric Phenomena, Magnetostricive Force Transducers, Photoelectric Transducers, Magnetostricive Force Transducers. Hall effect Transducers. Digital Tachometer, Sound Transducers. Hall effect Transducers. Digital Tachometer, Sound Transducer, Photovoltaic transducer, Photovoltaic transducer, Photoelectric Strain Transducers. Unit 3 Qualities of Measurements and Measuring Instruments: Performance characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transis	100						
Course Outcomes (CO) Student Will be able to 1. Classify and use transducers in applications. 2. Analyze different sensors to develop applications. 3. Analyze frequency using different analyzer. 4. Design DAS systems for practical applications. 1. Totassify and use transducers: Resistive Transducers: Resistance Thermometer, Resistive displacement, Resistive strain, Resistive Pressure, Resistive Optical radiation Transducers: Inductive Transducers: Inductive Transducers: Inductive Transducers: Capacitive Noisulter Transducers. Inductive Transducers: Capacitive Thickness Transducers, Capacitive Displacement Transducers, Capacitive Noisulter Transducers. Vinit 2 Active Electrical Transducers: Thermo elective Transducers. Thermoelectric Phenomena, Common Thermocouple system. Piezoelectric Transducers Piezoelectric Phenomena, Common Thermocouple system. Piezoelectric Transducers. Piezoelectric Transducers. Digital Tachometer, Sound Transducers. Magnetostrictive Force Transducers. Magnetostrictive Transducers. Photoelectric Phenomena, Magnetostrictive Force Transducers. Magnetostrictive Transducers. Magnetostrictive Transducers. Digital Tachometer, Sound Transducer, Photovoltaic transducer, Photoelectric Transducers. Digital Tachometer, Sound Transducer, Photovoltaic transducer, Photoelectric Transducers. (if Performance characteristics, Static characteristics, eror in measurements, Types of static errors, sources of errors, Dyn							Min
Student Will be able to 1. Classify and use transducers in applications. 2. Analyze frequency using different analyzer. 4. Design DAS systems for practical applications. 3. Analyze frequency using different analyzer. 4. Design DAS systems for practical applications. 7. Resistive Transducers- Resistance Thermometer, Resistive displacement, Resistive strain, Resistive Pressure, Resistive Optical ransducers. Inductive Transducers- Inductive Transducers. Inductive Displacement Transducers, Eddy current type Inductive Transducers. Capacitive Transducers. Capacitive Transducers- Capacitive Thickness Transducers, Capacitive Displacement Transducers, Capacitive Moisture Transducers. Nite 2 Active Electrical Transducers: Thermo elective transducers: Piezoelectric Transducers, Piezoelectric Phenomena, Common Thermocouple system. Piezoelectric Transducers, Piezoelectric Acceleration Transducers. Magnetostrictive Transducers - Piezoelectric Phenomena, Magnetostrictive Force Transducers. Magnetostrictive Transducers. Hall effect Transducers. Piezoelectric Phenomena, Photoconductive transducer. Hall effect Transducers. Photoelectric Phenomena, Photoconductive transducer. Hall effect Transducers. Statistical Analysis, Standard, electrical Standard, Atomic frequency and thuit maters. Digital Tachometer. Waltites of Measurements and Measuring Instruments: Performance characteristics, Static charac	Cou	ırse (Outcomes (CO)				
2. Analyze different sensors to develop applications. 3. Analyze frequency using different analyzer. 4. Design DAS systems for practical applications. Course Contents 10 Passive Electrical Transducers: Resistive Transducers- Resistance Thermometer, Resistive displacement, Resistive strain, Resistive Pressure, Resistive Optical radiation Transducers, Inductive Displacement Transducers, Eddy current type Inductive Transducers- Capacitive Thickness Transducers, Capacitive Displacement Transducers, Capacitive Moisture Transducers. (0) Unit 2 Active Electrical Transducers. Magnetostrictive Transducers. Networks and the provide the pr							
2. Analyze different sensors to develop applications. 3. Analyze frequency using different analyzer. 4. Design DAS systems for practical applications. Course Contents 10 Passive Electrical Transducers: Resistive Transducers- Resistance Thermometer, Resistive Displacement, Resistive strain, Resistive Pressure, Resistive Optical radiation Transducers, Inductive Displacement Transducers, Eddy current type Inductive Transducers- Capacitive Thickness Transducers, Capacitive Displacement Transducers, Capacitive Moisture Transducers. (0) Variable Electrical Transducers: Capacitive Moisture Transducers. Variable Electrical Transducers: Capacitive Moisture Transducers: Capacitive Moisture Transducers. Variable Electrical Transducers. Magnetostrictive Transducers. Piezoelectric Transducers. Magnetostrictive Transducers. Magnetostrictive Transducers. Magnetostrictive Transducers. Magnetostrictive Force Transducers. Magnetostrictive Acceleration Transducers. Magnetostrictive Transducers. Magnetostrictive Transducers. Magnetostrictive Transducers. Magnetostrictive Transducers. Magnetostrictive Acce	1.	Clas	sify and use transducer	in applications.			
3. Analyze frequency using different analyzer. Course Contents Ho 4. Design DAS systems for practical applications. Course Contents Ho Vinit 1 Passive Electrical Transducers: Resistive Transducers. Resistance Thermometer, Resistive displacement, Resistive strain, Resistive Pressure, Resistive Optical ranaducers. Inductive Transducers. Capacitive Displacement Transducers, Eddy current type Inductive Transducers. (a) Capacitive Transducers. Capacitive Transducers. Capacitive Transducers. (a) Capacitive Transducers. Capacitive Transducers. (b) Piezoelectric Transducers. Piezoelectric Force Transducers. (c) Piezoelectric Transducers. Magnetostrictive Phenomena, Common Thermocouple system. Piezoelectric Transducers. (c) Magnetostrictive Transducers. Magnetostrictive Force Transducers, Magnetostrictive Phenomena, Magnetostrictive Force Transducers, Magnetostrictive Transducers, Sundarders. (c) Notelectric Transducers. Photolectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer, Sound Transducer, Photolectric Transducers. (c) Vinit 3 Qualities of Measurements and Measuring Instruments: sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type). Q Meter, Megger, Transistor tester and Telemetry. (c)			-				
4. Design DAS systems for practical applications. Course Contents Ho Vinit 1 Passive Electrical Transducers: Resistive Transducers- Resistance Thermometer, Resistive displacement, Resistive strain, Resistive Pressure, Resistive Optical radiation Transducers, Inductive Displacement Transducers, Eddy current type Inductive Transducers- Capacitive Thickness Transducers, Capacitive Displacement Transducers, Capacitive Noisure Transducers. (0) Unit 2 Active Electrical Transducers: Capacitive Transducers - Diezoelectric Phenomena, Common Thermocouple system. Piezoelectric Transducers - Piezoelectric Phenomena Piezoelectric Force Transducers, Piezoelectric Transducers - Nagnetostrictive Torsion Transducers. Magnetostrictive Acceleration Transducers, Magnetostrictive Force Transducers, Magnetostrictive Torsion Transducers. Hall effect Transducers, Digital Tachometer, Sound Transducer, Photoelectric Transducers. Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photoe emissive Transducer. (0) Vinit 3 Qualities of Measurements and Measuring Instruments: Performance characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry. (1) Vinit 4 Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing. (2) Vinit 6 Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Compu			÷				
Unit 1 Passive Electrical Transducers: Resistive Transducers: Resistance Thermometer, Resistive displacement, Resistive strain, Resistive Pressure, Resistive Optical radiation Transducers. Inductive Displacement Transducers, Eddy current type Inductive Transducers: Capacitive Thickness Transducers, Capacitive Displacement Transducers, Capacitive Moisture Transducers: Capacitive Moisture Transducers: Capacitive Transducers: Diezoelectric Phenomena, Common Thermocouple system. Piezoelectric Transducers - Piezoelectric Phenomena Piezoelectric Force Transducers, Piezoelectric Transducers - Nagnetostrictive Phenomena, Magnetostrictive Force Transducers, Magnetostrictive Acceleration Transducers, Magnetostrictive Force Transducers, Magnetostrictive Collectric Phenomena, Photoenductric Torsion Transducers. Hall effect Transducers - Photoelectric Phenomena, Photoconductive transducers, Photoolectric Transducers, Optical Tachometer, Sound Transducer, Photoelectric Transducers - Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer. (0) Unit 3 Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry. (1) Unit 4 Digital Instruments, The IEEE 488 Bus. (2) Unit 5 Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing. (2)							
Resistive Transducers- Resistance Thermometer, Resistive displacement, Resistive strain, Resistive Pressure, Resistive Optical radiation Transducers Inductive Transducers- Inductive Transducers, Inductive Displacement Transducers, Eddy current type Inductive Transducers- Capacitive Thickness Transducers, Capacitive Displacement Transducers, Capacitive Moisture Transducers.(1)Unit 2 Active Electrical TransducersActive Electrical Transducers Prezoelectric Transducers - Piezoelectric Phenomena Piezoelectric Force Transducers, Piezoelectric Strain Transducers - Piezoelectric Phenomena Piezoelectric Force Transducers, Magnetostrictive Transducers, Piezoelectric Phenomena, Magnetostrictive Force Transducers, Magnetostrictive Acceleration Transducers, Photoelectric Transducers - Photoelectric Phenomena, Magnetostrictive Torsion Transducers, Photoelectric Transducers - Photoelectric Phenomena, Photoconductive transducer, Photoelectric Transducer, Photoelectric Transducers, Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(0)Unit 4 Unit 5 Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier S. Precision Signal Converter, Variable Resistor Analysing using waveform processing.(1)Unit 6 Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter.(2)	1					H	lours
Pressure, Resistive Optical radiation Transducers Inductive Transducers. Inductive Displacement Transducers, Eddy current type Inductive Transducers.Inductive Transducers Capacitive Transducers.Unit 2 Magnetostrictive Transducers.(1)2 Magnetostrictive Transducers.(2)Unit 3 Magnetostrictive Transducers.(3)Magnetostrictive Transducers.(4)Piezoelectric Transducers.(4)Magnetostrictive Transducers.(4)Magnetostrictive Transducers.(4)Magnetostrictive Transducers.(5)Magnetostrictive Transducers.(5)Piezoelectric Strain Transducers.(6)Magnetostrictive Transducers.(6)Magnetostrictive Transducers.(6)Photoelectric Transducers.(6)Photoelectric Transducers.(6)Photoelectric Transducers.(7)Photoelectric Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards.<	Uni	it 1	Passive Electrical Tr	ansducers:			(5)
Pressure, Resistive Optical radiation TransducersInductive Transducers.Inductive TransducersInductive Transducers.Capacitive Transducers.Capacitive Transducers.Unit 2Active Electrical Transducers.Unit 3Active Electrical Transducers.Magnetostrictive Transducers - Piezoelectric Phenomena, Common Thermocouple system. Piezoelectric Transducers.Piezoelectric Transducers - Piezoelectric Acceleration Transducers. Magnetostrictive Transducers.Magnetostrictive Transducers - Magnetostrictive Torsion Transducers. Hall effect Transducers. Photoelectric Acceleration Transducer, Photoelectric Transducers.Unit 3Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.Unit 4Digital Instruments: Orgital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessing.Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variab			Resistive Transduce	s- Resistance Thermometer, Resistiv	e displacement, Resistive strain		
type Inductive Transducers Capacitive Misture Transducers. Capacitive Displacement Transducers, Capacitive Moisture Transducers.(i)Unit 2Active Electrical Transducers: Thermo elective Transducers - Thermoelectric Phenomena, Common Thermocouple system. Piezoelectric Strain Transducers - Piezoelectric Acceleration Transducers. Magnetostrictive Transducers - Magnetostrictive Phenomena, Magnetostrictive Force Transducers, Magnetostrictive Acceleration Transducers, Magnetostrictive Force Transducers - Photoelectric Phenomena, Magnetostrictive Force Transducers - Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer.(i)Unit 3Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(i)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(i)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FT Spectrum Analysing using waveform processing.(i)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converter.(i)Via converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.<							
type Inductive Transducers Capacitive Transducers. Capacitive Transducers, Capacitive Displacement Transducers, Capacitive Moisture Transducers. Unit 2 Active Electrical Transducers: Thermo elective Transducers - Thermoelectric Phenomena, Common Thermocouple system. (i) Piezoelectric Strain Transducers - Piezoelectric Phenomena Piezoelectric Force Transducers, Piezoelectric Acceleration Transducers. (i) Magnetostrictive Transducers - Magnetostrictive Phenomena, Magnetostrictive Force Transducers. Magnetostrictive Acceleration Transducers, Magnetostrictive Torsion Transducers. (i) Hall effect Transducers - Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photoelectric Transducers. (i) Vinit 3 Qualities of Measurements and Measuring Instruments: (i) Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. (i) Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry. (i) Unit 4 Digital Instruments: (i) CRO, Digital Multi meters, Digital measurement of frequency, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus. (i) Unit 5 Wave Analyzers and Harmonic Distortions: (i) Basic wave analyser, Frequency Selective					Displacement Transducers, Ed	dy current	
Capacitive Moisture Transducers.Unit 2Active Electrical Transducers: Thermo elective Transducers - Thermoelectric Phenomena, Common Thermocouple system. Piezoelectric Transducers - Piezoelectric Phenomena Piezoelectric Force Transducers, Piezoelectric Transducers - Magnetostrictive Phenomena, Magnetostrictive Force 			type Inductive Transd	icers	•	•	
Unit 2 Active Electrical Transducers: Thermo elective Transducers - Piezoelectric Phenomena, Common Thermocouple system. Piezoelectric Strain Transducers, Piezoelectric Acceleration Transducers. Magnetostrictive Transducers - Magnetostrictive Phenomena, Magnetostrictive Force Transducers, Magnetostrictive Acceleration Transducers. Magnetostrictive Transducers, Digital Tachometer, Sound Transducer, Photoelectric Transducers - Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer. (f) Unit 3 Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry. (f) Unit 4 Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus. (f) Unit 5 Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing. (f) Unit 6 Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromecha			Capacitive Transdue	ers- Capacitive Thickness Transduce	rs, Capacitive Displacement T	ransducers,	
Thermo elective Transducers - Thermoelectric Phenomena, Common Thermocouple system. Piezoelectric Transducers, Piezoelectric Phenomena Piezoelectric Force Transducers, Piezoelectric Strain Transducers, Piezoelectric Acceleration Transducers. Magnetostrictive Transducers - Magnetostrictive Phenomena, Magnetostrictive Force Transducers, Magnetostrictive Transducers. Hall effect Transducers - Digital Tachometer, Sound Transducer, Photoelectric Transducers - Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer.(f)Unit 3Qualities of Measurements and Measuring Instruments: Performance characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(f)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital ph Microprocessor based instruments, The IEEE 488 Bus.(f)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(f)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(f)							
Piezoelectric Transducers - Piezoelectric Phenomena Piezoelectric Force Transducers, Piezoelectric Strain Transducers, Piezoelectric Acceleration Transducers. Magnetostrictive Transducers - Magnetostrictive Phenomena, Magnetostrictive Force Transducers. Hall effect Transducers, Digital Tachometer, Sound Transducer, Photoelectric Transducers - Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer.(0)Unit 3Qualities of Measurements and Measuring Instruments: 	Uni	it 2					(8)
Piezoelectric Strain Transducers, Piezoelectric Acceleration Transducers. Magnetostrictive Transducers, Magnetostrictive Acceleration Transducers. Magnetostrictive Force Transducers, Magnetostrictive Acceleration Transducers, Magnetostrictive Torsion Transducers. Hall effect Transducers, Digital Tachometer, Sound Transducer, Photovoltaic transducer, Photoelectric Transducers Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducers.(f)Unit 3Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(f)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(f)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(f)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(f)							
Magnetostrictive Transducers - Magnetostrictive Phenomena, Magnetostrictive Force Transducers, Magnetostrictive Acceleration Transducers, Magnetostrictive Torsion Transducers. Hall effect Transducers. Digital Tachometer, Sound Transducer, Photoelectric Transducers - Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer.(f)Unit 3Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(f)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(f)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(f)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(f)						ransducers,	
Transducers, Magnetostrictive Acceleration Transducers, Magnetostrictive Torsion Transducers. Hall effect Transducers, Digital Tachometer, Sound Transducer, Photoelectric Transducers - Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer.(f)Unit 3Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(f)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(f)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(f)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(f)							
Hall effect Transducers, Digital Tachometer, Sound Transducer, Photoelectric Transducers - Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer.(1)Unit 3Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(2)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(3)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(3)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(4)							
Photoelectric Transducers - Photoelectric Phenomena, Photoconductive transducer, Photovoltaic transducer, Photo emissive Transducer.(f)Unit 3Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(f)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(f)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(f)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(f)						lucers.	
transducer, Photo emissive Transducer.(1)Unit 3Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(1)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(3)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(4)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(4)				8		. 1. •	
Unit 3Qualities of Measurements and Measuring Instruments: Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(f)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(f)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(f)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(f)					otoconductive transducer, Pho	tovoltaic	
Performance characteristics, Static characteristics, error in measurements, Types of static errors, sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(f)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(f)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(f)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(f)							
sources of errors, Dynamic characteristics, Statistical Analysis, Standard, electrical Standard, Atomic frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(f)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(f)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(f)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(f)	Uni	it 3					(6)
frequency and time standards. Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.(1)Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(2)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(2)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(2)							
Basic LCR Bridge (Skeleton type), Q Meter, Megger, Transistor tester and Telemetry.Unit 4Digital Instruments: CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(3)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(4)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(7)				· · ·	vsis, Standard, electrical Standa	ard, Atomic	
Unit 4 Digital Instruments: (1) CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus. (2) Unit 5 Wave Analyzers and Harmonic Distortions: (3) Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing. (4) Unit 6 Data Acquisition System: (4) Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter. (7)			1 2		sister tester and Telemetry		
CRO, Digital Multi meters, Digital measurement of frequency, Digital Frequency meter, digital pH meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.(a)Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(a)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(f)				eleton type), Q Meter, Megger, Iran	sistor tester and Telemetry.		
meter, Automation in digital instruments, Digital Phase Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.Meter, Digital Capacitance Meter, Microprocessor based instruments, The IEEE 488 Bus.Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(f)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(f)	Uni	it 4	8				(8)
Microprocessor based instruments, The IEEE 488 Bus.Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(4)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(4)			<u> </u>	e		v	
Unit 5Wave Analyzers and Harmonic Distortions: Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing.(4)Unit 6Data Acquisition System: Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.(7)					ise Meter, Digital Capacitai	ice Meter,	
Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing. (* Unit 6 Data Acquisition System: (* Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter. (*			Microprocessor based	instruments, The IEEE 488 Bus.			
Basic wave analyser, Frequency Selective Wave Analyser, harmonic distortion analyser, Spectrum analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing. (* Unit 6 Data Acquisition System: (* Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter. (*	T T 4	:4 5	Waya Analyzana and	Harmonia Distortions:			(0)
analyser, Digital Fourier Analyser, Practical FFT Spectrum Analysing using waveform processing. (* Unit 6 Data Acquisition System: (* Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter. (*	Uni	11 5			harmonia distortion analyses		(8)
Unit 6 Data Acquisition System: (* Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter. (*							
Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.			anaryser, Digital Poul	er maryser, i factical fiff a spectrum	a mary sing using waverorin pro	occosilig.	
Objective of DAS, Signal conditioning of inputs, Single channel DAS, Multichannel DAS, Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.	Uni	it 6	Data Acquisition Sv	tem:			(7)
Computer based DAS, D/A and A/D Converters - Variable Resistor Network, Ladder type, Practical D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.	0 m				gle channel DAS Multicher		(\prime)
D/A converter, D/A using Op-Amp , Data Loggers, Sensor based computer Data Systems, Electromechanical A/D converter.							
Electromechanical A/D converter.							
Text Books	Tex	t Bo					
1. H. S. Kalsi, "Electronic Instrumentation", Tata McGraw-Hill, 3rd Edition, 2010.				trumentation". Tata McGraw-Hill 3	d Edition,2010.	I	
 D.V.S. Murty, "Transducers and Instrumentation" PHI, 2nd Edition,2012 							
Reference Books				· · · · · · · · · · · · · · · · · · ·	, -		
1. A.K.Sawhney, "A course in Electrical, Electronics measurement and Instrumentation", Danpat I				se in Electrical. Electronics m	easurement and Instruments	ation". Dannat	t Rai
Publication.	_,					, r	

2.	Welfrick Cooper, "Electronic Instrumentation and Measurement Techniques", PHI Publication.

3. David A Bell, "Electronic Instrumentation and Measurements", Third Edition, Oxford.

Mapping of COs and POs

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	1	2	2	2	-	1	-	-	1	-	-	1	-	-	-
CO 2	2	1	1	2	2	-	-	-	-	-	-	1	1	1	-
CO 3	3	3	2	2	-	-	-	-	1	-	-	2	2	-	-
CO 4	3	2	2	-	1	-	-	-	-	-	-	1=2	2	-	-

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	-	05
Understand	05	-	05	25
Apply	05	05	05	20
Analyze	05	05	-	05
Evaluate	-	05	-	05
Create	-	-	-	-
TOTAL	15	15	10	60

		Government College of E				
	Second Year B. T	ech. Electronics and Telecon		gineering (Semes	ter – IV)
Teachin	ag Scheme	EX2402: Signals a	na Systems	Examination Sch	eme	
Lectures				CT – 1	15	
Tutorials				$\frac{CT}{CT-2}$	15	
Total Cr				TA	10	
				ESE	60	
				Duration of ESE	02 Hrs	30 Min
	Outcomes (CO)					
	Vill be able to		-			
		e of CT- LTI using Laplace trans	sform			
	lyze Fourier transform	<u> </u>				
		em structure in different forms . rete time signal and response of I	T I TI avatam			
4. Con		Course Con				Hours
Unit 1	Introduction to sign	als and systems: Importance of s				(8)
Unit 2	(Even & odd signal, energy & power signa sinusoidal, sinc, recta Operations on signa Time Scaling and Fol Classification of Sys system with and with Non-linear system, T Systems, properties of	-	l, deterministic & e, unit step, unit ram n, Multiplication, D is and discrete time continuous time Sys c), Causal and Non- ystem, Stable and U	non- deterministic np, complex expone Differentiation, Inte signals. stems & discrete S -causal system, Lir	e signal, ential & egration, Systems, near and	
	Review of Fourier se Transform, Fourier 7 transform: Linearity, differentiation in tim	and Continuous Time LTI Systematics (Trigonometric and Expone Transform pair, Fourier Spectra Time shifting, Frequency sca the domain and frequency doma eval's relation Fourier transform rm.	ential form and its , Convergence of ling, Time scaling in, Integral in tim	FT. Properties of , Time reversal, e domain, Multip	Fourier Duality, lication,	(8)
Unit 3	Laplace Transform theorem of Laplace Tr system analysis. Inver systems. Convolution and Analysis of CT-1 Response of CT-LTI	nd Continuous Time LTI Syste Definition and its properties, RC ransform, Application of Laplace rsion using duality, numerical bas integral & its properties, convolu- LTI Systems: Described by diffe- using Laplace transform. Represe -II, Cascade and parallel form.	C and pole zero con transforms to the co sed on properties, pr ation sum & its prop rential equation and	ontinuous time LTI operties of CT- LT perties, Representa l in Laplace S-dom	T T Ition ain,	(8)
Unit 4	Fourier series of discr Fourier Transform of Continuous time sign	ies and Discrete Fourier Trans ete time signal, Properties of disc discrete time signal, (DTFT) Co al, Properties of DTFT. Analysis nd order DT-LTI system. Aliasir	crete time Fourier se mparison of Fourier of DT-LTI using I	transform of Disc. DTFT. Frequency r	response	(6)
Unit 5	Representing DT-LT IIR Systems. Discrete	rrelation in Discrete Time Syste I using difference equations, Cl or linear convolution, Circular on, Cross correlation and Auto c	assification of discu Convolution, Overl	lap adds and Overl		(6)
Unit 6	properties of ROC, U Shifting, Time Reve theorem, Initial value	duction of Z-transform, Relation inilateral and bilateral Z-transfor rsal, Time Scaling, Convolution & Final value theorem. Inversion and. Transfer function (Poles & Z	m, Properties of Z n, Differentiation, se Z- transform: Lo	transform: Linearit Multiplication, Pa ong division metho	y, Time irseval's	(6)

Tex	Text Books							
1.	1. A Nagoor Kani "Signals & system", TMH Publication.							
2.	Ramesh Babu "Signals & system", SciTech Publication.							
3.								
Ref	Reference Books							
1.	I. Michael J. Roberts, "Fundamentals of signals & systems", Tata McGraw Hill.							
2.	B. P. Lathi, "Signals Systems and Communication", BS Publications							
3.								

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	3	1	2	2	-	-	-	1	-	1	-	2	1	1
CO 2	2	3	2	1	2	-	-	-	1	-	-	-	2	1	1
CO 3	2	2	1	1	2	-	-	-	-	-	-	-	1	2	2
CO 4	2	2	2	2	2	-	-	-	-	-	-	-	2	1	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	-	-
Understand	05	-	-	25
Apply	05	05	05	15
Analyze	05	05	05	10
Evaluate	-	05	-	10
Create	-	-	-	-
TOTAL	15	15	10	60

			Government Colleg	e of Engineer	ing, Karad			
		Second Year B	. Tech. Electronics and T		_		er – IV)	
			EX2403: Anal	og Communio	cation			
Teachin						Examination S	cheme	
Lectures		03 Hrs/week				CT – 1	15	
Tutorials		-				CT – 2	15	
Total Cre	edits	03				ТА	10	
						ESE	60	
						Duration of ESH	E 02 Hrs	30 Min
		nes (CO)						
Student W								
			n system and analyze diffe	erent types of	noise.			
			odulation techniques.					
			e of transmission and rece		theorem			
4. Con	erate d	filerent puise co	mmunication system by us	sing Sampling se Contents	theorem			Hours
Unit 1	Com	nunication Syst		e Contents				
Unit I		v	m, need and types of mod	ulation: noise	- classificat	ion sources due t	to several	(8)
		-	reactive circuits; noise fig					
	-	rature.	reactive encurts, noise rig	ure-carculatio		measurement, no	150	
Unit 2		itude Modulati	on:					(8)
Onic 2			n (AM) - mathematical and	alvsis modula	tion index	Frequency spectri	im power	(0)
			generation (Collector and					
			modulator (using FET, BJ					
			ift method; Vestigial Side					
		Band scheme (IS		Duild (VSD)	modulution		dependent	
Unit 3		Modulation:	<i>(</i> D).					(8)
cint s			n (FM), mathematical Ana	alvsis, modula	tion index.	frequency spectri	ım. power	(0)
			arrowband & wideband F					
			ontents of the carrier & th					
			etween AM & FM. FM; P					
TT 1 1	U	· ·	,		· · /	5		
Unit 4		dulators:			A T 1 1 1		· 1	(4)
			al diode detector, VSB der					
	detect	or, basic demod	ulator, balanced slope dete	ector, phase di	scriminator	and ratio detector	ſ .	
Unit 5	Radio	Receivers:						(8)
Onit 5			- Tuned Radio Frequence	v (TRF) su	per heterod	vne: AM super h	neterodyne	(0)
			ier, mixer-self and separ					
			Gain Control (AGC) ar	•		· · ·		
			super heterodyne receiver					
	limite			, F	8, r	r		
Unit 6			d Multiplexing:					(6)
011100			ypes of sampling-ideal, nat	tural, flat top s	ampling, ge	eneration and dete	ction -	(0)
			lation (PAM), pulse width					
	.	.	odulation. (PCM), multiple		· •	•		
		on multiplexing.		0	•			
Text Bo	oks	· · ·						
			Communication Systems",					•
2. Tau	b,Schi	ling and G.Saha	a, "Principles of Communi	cation System	s", 3rd edit	ion, McGrawHill,	1995.	
	.							
			on Systems", BS publication	ons.		T		T
Referen				1				
			unication Systems", 4th ed			б.		
			on Systems", 4th edition, J					
3. Roc	idy and	Coolen, Electi	ronic Communication", 4t	i equion, Prer	ince mail of	mula, 2005.		

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	1	-	-	-	-	-	-	-	1	-	1	3	-
CO 2	2	3	2	1	1	1	-	-	-	-	-	1	1	3	1
CO 3	3	2	2	2	-	1	-	-	-	-	1	1	1	3	1
CO 4	3	2	2	2	-	-	-	-	-	-	-	1	1	3	-

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	-	05
Understand	05	-	05	35
Apply	05	05	05	10
Analyze	05	05	-	05
Evaluate	-	05	-	05
Create	-	-	-	-
TOTAL	15	15	10	60

				Government	College of Engine	ering, Kar	ad		
		Sec	ond Year B. T		s and Telecommun			nester – IV)
		<i></i>		EX2404: Mi	icrocontroller and	Interfacin	0		
		g Sche					Examination S		
	tures orials		03 Hrs/week				CT – 1 CT – 2	15	
	al Cre		- 03				TA	10	
100		sans	03				ESE	60	
							Duration of ES		30 Min
Сот	irse (Outcor	nes (CO)				Duration of LS	021113	50 10111
		Vill be a							
				embly language pr	ogramming & compr	ehensive tre	atment of 8051 &	2 PIC	
	micr	ocontro	oller interfacing	for engineers.	0 0 1				
2.					sed embedded system				
3.		-	*		ries to develop real tin				
4.				tform for real time	e applications like sn	hart home, s	smart agriculture,	utility of re	enewable
	ener	gy reso	urces.		Course Contents				Hours
Un	it 1	8051	Controller Ar	rehitecture And	Instruction Set: T	he CPU /	ddressing mode	e avtornal	(8)
UI	11 1				ion execution, Instru				(0)
					ment tools like asser				
		-			ng, Chip technology			•	
				allel I/O, Timers, I		, 	,	, ,	
					*				
Un	it 2				on Set: PIC Micro-				(6)
				-	gister, Memory organ	nization, Ad	dressing modes,	Instruction	
		set, in	terrupt handling						
Un	it 3	with e With Interfa	external ROM, F PIC- Port stru	Flash RAM	With 8051-Memory structure & timers Keypad, Interfacing	of PIC18F,	PWM generation	on UART,	(8)
Un	it 4	ARM Energ	processor core y Management	, Data Path & Inst., Introduction to	ontrollers: The ARM struction Decoding, C Exceptions, Condi s, Linkers and Debug	Comparison tional Exec	of ARM Series, aution, ARM De	Intelligent	(8)
Un	it 5	Intro	duction to open	source platform	s like Arduino, Rasp	berrv Pi a	nd its application	is:	(6)
		Introd	luction to arduin luction to Raspb	o boards, basic ty	pes, history &IDE, Co sic types, history &ID	ompatible sh	nields with their li	braries.	
Un	it 6	Appli Studie		based Raspberry	Pi – IoT Standards, I	oT Platform	/Architecture, Sir	nple Case	(6)
Tex	t Bo	oks							
1.	Mazi	di, "80	51 microcontrol	ler & embedded sy	ystem" 3rdEdition ,Pe	earson			
					stem" 3rdEdition ,Pe				
3.				Assembly Languag	ge Programming & A	rchitecture"			
		ce Boo							
			•		– Architecture, Prog	ramming &	Applications", Pe	nram Intern	ational
			Asia, Second E			-			
					rollers", Pearson Edu				-
3.					Furber, Pearson Edu	cation,ISBN	978-81-317-0840)-8, 2E,2012	2
4.	Ma	ssimo ł	Banzı, "Getting	Started with Ardui	no				

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	1	-	1	-	-	-	-	-	-	1	1	1	2
CO 2	2	3	3	2	1	-	-	-	1	-	-	1	1	1	2
CO 3	2	2	1	-	1	-	-	-	-	-	-	1	1	1	2
CO 4	3	3	2	2	1	1	-	-	1	-	1	1	1	1	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	05	-	-	05
Understand	05	05	05	25
Apply	05	05	05	20
Analyze	-	05	-	10
Evaluate	-	-	-	-
Create	-	-	-	-
TOTAL	15	15	10	60

			Government College				
		Second Year B.	Tech. Electronics and Tel			ter – IV)	
Tar	oh!	g Scheme	EX2405 : Network A	nalysis and Synthesi	s Examination Sch	00000	
	tures		-		CT – 1	15	
	orials				CT = 1 CT = 2	15	
	al Cr				TA	10	
					ESE	60	
					Duration of ESE	02 Hrs 3	0 Min
		Outcomes (CO)					
		ill be able to					
1.		work Analysis and Sy					1
2.		, RL) and 2nd order (of capacitor, inductor and comp (\mathbf{RLC}) circuits	oute initial conditions to	r current and voltage	e in 1st ord	ler
3.			analyze the network in terms of	f network functions and	find various param	eters of tw	o port
5.		vorks	analyze the network in terms of	T network functions and	The various param		o pon
4.		gn different types fil	ters				
			Course	Contents			Hours
Un	it 1		entals: Basic Definitions: Pa				(6)
			, Unilateral, bilateral, lumped				
			(Ideal & practical), source t				
		•	C,L,C), Star- Delta transformation of the supermode and supermesh analysis		ction of networks:	mesn,	
		Noue analysis, supe	ernoue and supermesh analysis				
Un	it 2	Network Theorem	s: D.C. and A.C. network so	ution using dependent/	controlled and inde	pendent	(6)
			eralized loop and node mat				
		Theorem, Norton's	Theorem, Thevenin's Theorem	n, Maximum Power Tra	nsfer Theorem.		
T Inc	:4.7	Tuonsiont Dognor	an Network Colution using I	anlage therefore Init	al and final Candi	tions of	(0)
Un	it 3		se: Network Solution using I tate & transient response (Vo				(6)
		•	cuit, DC response of RLC circu				
		response of ice ene	and, De response of RLe circu	in, Sindsoldal response		incuit.	
Un	it 4	Two port networ	ks and network functions:	Two port network: Z,	Y, H, ABCD para	ameters,	(8)
		Interrelation of dif	ferent parameters, Interconne	ctions of two port net	work, Network Fu	nctions:	
			for one port & two port netw				
			Driving point impedance, adu				
			of complex frequency, signif				
			driving point functions, stabil	ity concept in passive c	ircuit using Routh-	Hurwitz	
		criterion, pole zero	diagram.				
Un	it 5	Synthesis of RLC	circuits: Realizability theory	and synthesis of one-i	ort networks: Caus	sality &	(8)
011		•	olynomials, positive real fund			•	(0)
			R-C, & R-L one port circuits,			1	
		-					
Un	it 6		spects of filter design probl				(8)
			pass filter approximation (But				
			agnitude and frequency norma		stormation, Design	of Low	
		Pass, High Pass, Ba	and Pass and Band Stop filters.				
Тех	xt Bo	oks					
1.			Analysis and Synthesis". Wile	ey international			
2.			Theory (Analysis & Synthesis		t Rai & co.		
3.		-	Network Analysis", IIIrd Editi	·			
Ref		ce Books					
1.	A.S	udhakar,Shyammoha	an S.Palli, "Circuit & Network	- Analysis & Synthesis	", III rd Edition – Tat	a McGraw	Hill
		lication					
2.			Circuit Analysis", Schaum's se				
3.	Ale	xander & Sadiku, "F	undamentals of Electric Circuit	ts", TMH S1xth Edition			

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	3	-	-	-	-	-	-	-	-	-	-	1	2	-	-
CO 2	3	3	2	2	-	-	-	-	-	-	-	1	2	2	-
CO 3	2	3	2	2	-	-	-	-	-	-	-	1	2	2	-
CO 4	3	3	2	2	-	-	-	-	-	-	-	1	2	2	-

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	2	-
Understand	5	4	2	10
Apply	5	6	2	15
Analyze	5	5	2	15
Evaluate	-	-	2	10
Create	-	-	-	10
TOTAL	15	15	10	60

Second Year B. Tech. Electronics and Telecommunication Engineering (Semester – IV) EX2406 : Transducers and Measurement Lab Laboratory Scheme Examination Scheme Practical 2 Hrs/week TA/CA 25 Otal Credits 1 Essenitation Scheme Essenitation Scheme Student Will be able to Essenitation Scheme for a fine problems. Essenitation Scheme for real time problems. J. Demonstrate measurement purpose. Issue of Experiment Issue of Experiment A. Categorize sensors for measurement purpose. Issue of Experiment Issue of Experiment To perform experiments on Transducer like thermocouple, thermistor, RTD and LVDT to study its characteristics. Issue of Experiment Issue of Experiment Experiment 1 To perform experiments on LVDT/LDR transducer for displacement measurement. Issue of Experiment Issue of Experiment Experiment 5 To perform experiments on strain gauge for temperature measurement. Issue of a coil. Issue of a coil. Issue of a coil. Experiment 8 To perform experiments on LCR and Q meter for measurement. Issue of a coil.			Go	vernment College of En	gineering, Karad			
Laboratory Scheme Examination Scheme Practical 2 Hrs/week TA/CA 25 Total Credits 1 ESE - Course Outcomes (CO) ESE - - Student Will be able to 1 Demonstrate measurement tools. - 1. Demonstrate measurement purpose. - - 3. Design Data Acquisition Systems for real time problems. - - 4. Categorize sensors in terms of their functions and parameters - - Experiment 1 To perform experiments on Transducer like thermocouple, thermistor, RTD and LVDT to study its characteristics. - - Experiment 2 To perform experiments on LVDT/LDR transducer for displacement measurement. - - Experiment 4 To perform experiments on thermistor for temperature measurement. - - Experiment 5 To perform experiments on strain gauge for temperature measurement. - - Experiment 7 To perform experiments on Strain gauge for temperature measurement. - - Experiment 6 To perform experiments on strain gauge for temperature measurement. - - Experiment 8 To		Secon					nester – IV)	
Practical 2 Hrs/week TA/CA 25 Total Credits 1 ESE - Student Will be able to ESE - 1. Demonstrate measurement tools. . . 2. Use sensors for measurement purpose. . . . 3. Design Data Acquisition Systems for real time problems. . . . 4. Categorize sensors in terms of their functions and parameters . . . Experiment 1 To perform experiments on Transducer like thermocouple, thermistor, RTD and LVDT to study its characteristics. . . . Experiment 2 To perform experiments on Resistance Temperature Detector for temperature measurement. . . . Experiment 3 To perform experiments on LVDT/LDR transducer for displacement measurement. . . . Experiment 4 To perform experiments on thermocouple for temperature measurement. . . . Experiment 7 To perform experiments on Pressure Gauges for pressure measurement. . . . Experiment 8 Q of a coil. To perform experiments on ADC& and Q meter for measurement. . .				406 : Transducers and	Measurement Lab		~ ~	
Total Credits 1 ESE - Course Outcomes (CO)		•						
Course Outcomes (CO) Student Will be able to 1. Demonstrate measurement purpose. 3. Design Data Acquisition Systems for real time problems. 4. Categorize sensors in terms of their functions and parameters List of Experiment Experiment 2 To perform experiments on Transducer like thermocouple, thermistor, RTD and LVDT to study its characteristics. Experiment 2 To perform experiments on Resistance Temperature Detector for temperature measurement. Experiment 3 To perform experiments on LVDT/LDR transducer for displacement measurement. Experiment 4 To perform experiments on thermistor for temperature measurement. Experiment 5 To perform experiments on thermocouple for temperature measurement. Experiment 6 To perform experiments on Pressure Gauges for pressure measurement. Experiment 7 To perform experiments on LCR and Q meter for measurement. Experiment 9 To perform experiments on ADC& DAC used in DAS. Experiment11 To perform experiments on ADC& DAC used in DAS. Experiment12 To study characteristics of Spectrum Analyser. List of Submission 1 1 Total number of Experiments: 12 2 Total number of Sepert: NA			2 Hrs/week				25	
Student Will be able to 1. Demonstrate measurement tools. 2. Use sensors for measurement purpose. 3. Design Data Acquisition Systems for real time problems. 4. Categorize sensors in terms of their functions and parameters Experiment 1 To perform experiments on Transducer like thermocouple, thermistor, RTD and LVDT to study its characteristics. Experiment 2 To perform experiments on Resistance Temperature Detector for temperature measurement. Experiment 3 To perform experiments on LVDT/LDR transducer for displacement measurement. Experiment 4 To perform experiments on thermocouple for temperature measurement. Experiment 5 To perform experiments on thermocouple for temperature measurement. Experiment 6 To perform experiments on strain gauge for temperature measurement. Experiment 7 To perform experiments on LCR and Q meter for measurement. Experiment 9 To perform experiments on ADC and interfacing of DAS. Experiment10 To perform experiments on ADC and interfacing of DAS. Experiment11 To perform experiments on ADC and interfacing of DAS. Experiment12 To study characteristics of Spectrum Analyser. Experiment12 To tal number of Experiments: 12 1 Total number of Sheets:			(\mathbf{CO})			ESE	-	
1. Demonstrate measurement tools. 2. Use sensors for measurement purpose. 3. Design Data Acquisition Systems for real time problems. 4. Categorize sensors in terms of their functions and parameters List of Experiment Experiment 1 To perform experiments on Transducer like thermocouple, thermistor, RTD and LVDT to study its characteristics. Experiment 2 To perform experiments on Resistance Temperature Detector for temperature measurement. Experiment 3 To perform experiments on LVDT/LDR transducer for displacement measurement. Experiment 4 To perform experiments on thermocouple for temperature measurement. Experiment 5 To perform experiments on thermocouple for temperature measurement. Experiment 7 To perform experiments on strain gauge for temperature measurement. Experiment 8 To perform experiments on LCR and Q meter for measurement. Experiment 9 To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil. Experiment 9 To perfo								
3. Design Data Acquisition Systems for real time problems. 4. Categorize sensors in terms of their functions and parameters List of Experiment Experiment 1 To perform experiments on Transducer like thermocouple, thermistor, RTD and LVDT to study its characteristics. Experiment 2 To perform experiments on Resistance Temperature Detector for temperature measurement. Experiment 3 To perform experiments on LVDT/LDR transducer for displacement measurement. Experiment 4 To perform experiments on thermistor for temperature measurement. Experiment 5 To perform experiments on thermocouple for temperature measurement. Experiment 6 To perform experiments on Pressure Gauges for pressure measurement. Experiment 7 To perform experiments on LCR and Q meter for measurement. Experiment 9 To perform experiments on DAS and interfacing of DAS. Experiment11 To perform experiments on ADC& DAC used in DAS. Experiment12 To study characteristics of Spectrum Analyser. List of Submission I 1 Total number of Experiments: 12 2 Total number of sheets: NA 3 Course Project work & Report: NA				ls.				
4. Categorize sensors in terms of their functions and parameters List of Experiment Experiment 1 To perform experiments on Transducer like thermocouple, thermistor, RTD and LVDT to study its characteristics. Experiment 2 To perform experiments on Resistance Temperature Detector for temperature measurement. Experiment 3 To perform experiments on LVDT/LDR transducer for displacement measurement. Experiment 4 To perform experiments on thermistor for temperature measurement. Experiment 5 To perform experiments on thermocouple for temperature measurement. Experiment 6 To perform experiments on strain gauge for temperature measurement. Experiment 7 To perform experiments on LCR and Q meter for measurement. Experiment 9 To perform experiments on DAS and interfacing of DAS. Experiment11 To perform experiments on ADC& DAC used in DAS. Experiment12 To study characteristics of Spectrum Analyser. List of Submission I I Total number of Experiments: 12 I Total number of Sheets: NA I Course Project work & Report: NA	2.			<u> </u>				
List of Experiment Experiment 1 To perform experiments on Transducer like thermocouple, thermistor, RTD and LVDT to study its characteristics. Experiment 2 To perform experiments on Resistance Temperature Detector for temperature measurement. Experiment 3 To perform experiments on LVDT/LDR transducer for displacement measurement. Experiment 4 To perform experiments on thermistor for temperature measurement. Experiment 5 To perform experiments on thermocouple for temperature measurement. Experiment 6 To perform experiments on strain gauge for temperature measurement. Experiment 7 To perform experiments on Pressure Gauges for pressure measurement. Experiment 8 To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil. Experiment 9 To perform experiments on DAS and interfacing of DAS. Experiment11 To perform experiments on ADC& DAC used in DAS. Experiment12 To study characteristics of Spectrum Analyser. List of Submission 1 1 Total number of Experiments: 12 2 Total number of sheets: NA 3 Course Project work & Report: NA								
Experiment 1 To perform experiments on Transducer like thermocouple, thermistor, RTD and LVDT to study its characteristics. Experiment 2 To perform experiments on Resistance Temperature Detector for temperature measurement. Experiment 3 To perform experiments on LVDT/LDR transducer for displacement measurement. Experiment 4 To perform experiments on thermistor for temperature measurement. Experiment 5 To perform experiments on thermocouple for temperature measurement. Experiment 6 To perform experiments on strain gauge for temperature measurement. Experiment 7 To perform experiments on LCR and Q meter for measurement. Experiment 9 To perform experiments on DAS and interfacing of DAS. Experiment11 To perform experiments on ADC& DAC used in DAS. Experiment12 To study characteristics of Spectrum Analyser. List of Submission I 1 Total number of Experiments: 12 1 Total number of sheets: NA 2 Total number of sheets: NA	4.	Categorize	e sensors in terms of					
study its characteristics.Image: Study its characteristics.Experiment 2To perform experiments on Resistance Temperature Detector for temperature measurement.Experiment 3To perform experiments on LVDT/LDR transducer for displacement measurement.Experiment 4To perform experiments on thermistor for temperature measurement.Experiment 5To perform experiments on thermocouple for temperature measurement.Experiment 6To perform experiments on strain gauge for temperature measurement.Experiment 7To perform experiments on Pressure Gauges for pressure measurement.Experiment 8To perform experiments on LCR and Q meter for measurement.Experiment 9To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator.Experiment10To perform experiments on ADC& DAC used in DAS.Experiment11To study characteristics of Spectrum Analyser.List of SubmissionImage: Course Project work & Report: NA	Free		To nonforme or noni			ton DTD and		
Experiment 2To perform experiments on Resistance Temperature Detector for temperature measurement.Experiment 3To perform experiments on LVDT/LDR transducer for displacement measurement.Experiment 4To perform experiments on thermistor for temperature measurement.Experiment 5To perform experiments on thermocouple for temperature measurement.Experiment 6To perform experiments on strain gauge for temperature measurement.Experiment 7To perform experiments on Pressure Gauges for pressure measurement.Experiment 8To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil.Experiment 9To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator.Experiment10To perform experiments on ADC& DAC used in DAS.Experiment11To study characteristics of Spectrum Analyser.List of SubmissionTotal number of Experiments: 12 Total number of Experiments: 12 Total number of Sheets: NA Course Project work & Report: NA	Expe	riment 1			ermocoupie, mermis	stor, KID and		
Imagemeasurement.Experiment 3To perform experiments on LVDT/LDR transducer for displacement measurement.Experiment 4To perform experiments on thermistor for temperature measurement.Experiment 5To perform experiments on thermocouple for temperature measurement.Experiment 6To perform experiments on strain gauge for temperature measurement.Experiment 7To perform experiments on Pressure Gauges for pressure measurement.Experiment 8To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil.Experiment 9To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator.Experiment10To perform experiments on ADC& DAC used in DAS.Experiment11To study characteristics of Spectrum Analyser.IIITotal number of Experiments: 12ITotal number of Sheets: NAITotal number of Shee			study its character	5105.				
Experiment 3 To perform experiments on LVDT/LDR transducer for displacement measurement. Experiment 4 To perform experiments on thermistor for temperature measurement. Experiment 5 To perform experiments on thermocouple for temperature measurement. Experiment 6 To perform experiments on strain gauge for temperature measurement. Experiment 7 To perform experiments on Pressure Gauges for pressure measurement. Experiment 8 To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil. Experiment 9 To perform experiments on DAS and interfacing of DAS. Experiment11 To perform experiments on ADC& DAC used in DAS. Experiment12 To study characteristics of Spectrum Analyser. List of Submission 1 1 Total number of Experiments: 12 1 Total number of Sheets: NA 2 Total number of Sheets: NA 3 Course Project work & Report: NA	Expe	riment 2	To perform experi	nents on Resistance Tempe	rature Detector for to	emperature		
Experiment 4 To perform experiments on thermistor for temperature measurement. Experiment 5 To perform experiments on thermocouple for temperature measurement. Experiment 6 To perform experiments on strain gauge for temperature measurement. Experiment 7 To perform experiments on Pressure Gauges for pressure measurement. Experiment 8 To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil. Experiment 9 To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator. Experiment10 To perform experiments on ADC& DAC used in DAS. Experiment12 To study characteristics of Spectrum Analyser. List of Submission 1 1 Total number of Experiments: 12 1 Total number of sheets: NA 3 Course Project work & Report: NA			measurement.					
Experiment 4 To perform experiments on thermistor for temperature measurement. Experiment 5 To perform experiments on thermocouple for temperature measurement. Experiment 6 To perform experiments on strain gauge for temperature measurement. Experiment 7 To perform experiments on Pressure Gauges for pressure measurement. Experiment 8 To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil. Experiment 9 To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator. Experiment10 To perform experiments on ADC& DAC used in DAS. Experiment12 To study characteristics of Spectrum Analyser. List of Submission 1 1 Total number of Experiments: 12 1 Total number of sheets: NA 3 Course Project work & Report: NA	E	uine on t 2	To nonforme or noni	wanta an I VDT/I DD tuana	du			
Experiment 5To perform experiments on thermocouple for temperature measurement.Experiment 6To perform experiments on strain gauge for temperature measurement.Experiment 7To perform experiments on Pressure Gauges for pressure measurement.Experiment 8To perform experiments on Pressure Gauges for pressure measurement.Experiment 8To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil.Experiment 9To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator.Experiment10To perform experiments on DAS and interfacing of DAS.Experiment11To perform experiments on ADC& DAC used in DAS.Experiment12To study characteristics of Spectrum Analyser.List of SubmissionTotal number of Experiments: 121Total number of Experiments: NA2Total number of sheets: NA3Course Project work & Report: NA	Expe	riment 5	To perform experi	nents on LVD1/LDK trans	aucer for displaceme	ent measureme	ent.	
Experiment 5To perform experiments on thermocouple for temperature measurement.Experiment 6To perform experiments on strain gauge for temperature measurement.Experiment 7To perform experiments on Pressure Gauges for pressure measurement.Experiment 8To perform experiments on Pressure Gauges for pressure measurement.Experiment 8To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil.Experiment 9To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator.Experiment10To perform experiments on DAS and interfacing of DAS.Experiment11To perform experiments on ADC& DAC used in DAS.Experiment12To study characteristics of Spectrum Analyser.List of SubmissionTotal number of Experiments: 121Total number of Experiments: NA2Total number of sheets: NA3Course Project work & Report: NA	Expe	riment 4	To perform experi	ments on thermistor for tem	perature measureme	nt.		
Experiment 6To perform experiments on strain gauge for temperature measurement.Experiment 7To perform experiments on Pressure Gauges for pressure measurement.Experiment 8To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil.Experiment 9To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator.Experiment10To perform experiments on DAS and interfacing of DAS.Experiment11To perform experiments on ADC& DAC used in DAS.Experiment12To study characteristics of Spectrum Analyser.List of SubmissionImage: State of State	Бире		ro periorin enperi		P ••• ••• •• • ••• ••• ••• ••• ••• •••			
Experiment 7To perform experiments on Pressure Gauges for pressure measurement.Experiment 8To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil.Experiment 9To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator.Experiment10To perform experiments on DAS and interfacing of DAS.Experiment11To perform experiments on ADC& DAC used in DAS.Experiment12To study characteristics of Spectrum Analyser.List of SubmissionI Total number of Experiments: 12 Total number of sheets: NA Course Project work & Report: NA	Expe	riment 5	To perform experi	nents on thermocouple for	temperature measure	ement.		
Experiment 8 To perform experiments on LCR and Q meter for measurement of different parameters like Q of a coil. Experiment 9 To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator. Experiment10 To perform experiments on DAS and interfacing of DAS. Experiment11 To perform experiments on ADC& DAC used in DAS. Experiment12 To study characteristics of Spectrum Analyser. List of Submission Total number of Experiments: 12 1 Total number of Sheets: NA 3 Course Project work & Report: NA	Expe	riment 6	To perform experi	nents on strain gauge for te	mperature measurem	nent.		
Q of a coil.QExperiment 9To perform experiments on distortion factor meter and determination of the % distortion of the given oscillator.Experiment10To perform experiments on DAS and interfacing of DAS.Experiment11To perform experiments on ADC& DAC used in DAS.Experiment12To study characteristics of Spectrum Analyser.List of SubmissionImage: Construct of Experiments: 121Total number of Experiments: 122Total number of sheets: NA3Course Project work & Report: NA	Expe	riment 7	To perform experi	nents on Pressure Gauges f	or pressure measurer	ment.		
Image:	Expe	riment 8		nents on LCR and Q meter	for measurement of	different para	meters like	
Experiment11 To perform experiments on ADC& DAC used in DAS. Experiment12 To study characteristics of Spectrum Analyser. List of Submission Image: Control of Experiments: 12 1 Total number of Experiments: 12 2 Total number of sheets: NA 3 Course Project work & Report: NA	Expe	riment 9			eter and determinati	on of the % di	stortion of	
Image: Properties of Properties of Spectrum Analyser. Image: Properties of Spectrum Analyser. Experiment12 To study characteristics of Spectrum Analyser. Image: Properties of Spectrum Analyser. List of Submission Image: Properties of Spectrum Analyser. Image: Properties of Spectrum Analyser. 1 Total number of Experiments: 12 Image: Properties of Spectrum Analyser. Image: Properties of Spectrum Analyser. 3 Course Project work & Report: NA Image: Properties of Spectrum Analyser. Image: Properties of Spectrum Analyser.	Expe	riment10	To perform experi	nents on DAS and interfaci	ng of DAS.			
List of Image: Submission 1 Total number of Experiments: 12 2 Total number of sheets: NA 3 Course Project work & Report: NA	Expe	riment11	To perform experi	nents on ADC& DAC used	in DAS.			
Submission1Total number of Experiments: 122Total number of sheets: NA3Course Project work & Report: NA	Expe	riment12						
2 Total number of sheets: NA 3 Course Project work & Report: NA								
3 Course Project work & Report: NA		1		<u> </u>				
5 Field Visit Report: NA								

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	1	2	2	-	-	-	1	-	-	1	2	1	-
CO 2	2	-	-	-	1	-	-	-	1	-	-	1	2	1	-
CO 3	2	1	3	-	2	-	-	-	1	-	-	2	2	1	-
CO 4	2	2	1	-	-	-	-	-	1	-	-	1	-	1	1

Knowledge Level	CA	ESE
Remember	-	-
Understand	5	-
Apply	7	-
Analyze	8	-
Evaluate	5	-
Create	-	-
TOTAL	25	-

		Ge	vernment College of Eng	gineering, Karad				
	Secor		Electronics and Telecom			nester – IV)		
			EX2407 : Analog Comm		U X	,		
Labo	ratory Sche	eme			Examination	n Scheme		
Practi		2 Hrs/week			TA/CA	25		
	Credits	1			ESE	25		
	se Outcome							
	t Will be abl							
1.		5	ulation schemes for commur	lication				
 Analyze different receiver. Apply sampling theorem for pulse modulation. 								
3. 4.								
4.	Contrast u	lifferent analog mod	List of Ex	porimont				
Fyng	riment 1	To perform and a	alyze amplitude modulation.					
		•						
Expe	riment 2	To perform and an	alyze amplitude demodulation	on.				
Expe	riment 3	Perform and analy	ze balanced modulation usin	g IC 1496.				
Expe	riment 4	To perform and an	alyze frequency modulation	(using IC/Varactor	diode /BJT /F	ET).		
Expe	riment 5	To perform and an	alyze amplitude demodulation	on.(using IC/ratio d	etector /BJT /I	FET).		
Expe	riment 6	To perform and an	alyze pre emphasis and de-e	mphasis.				
Expe	riment 7	To perform and an	alyze different blocks in AN	I super heterodyne	receiver.			
Expe	riment 8	To perform and an	alyze RF amplifier.					
Expe	riment 9	To perform and an	alyze IF amplifier.					
Expe	riment10	To perform and an	alyze different blocks in FM	super heterodyne r	receiver.			
Expe	riment11	To perform flat to	o sampling.					
Proje	ct Work	Open ended theore	tical course project work in t	he area of Analog (Communicatio	n System.		
List o Subm	of nission							
	1	Total number of E						
	2	Total number of s						
	3	Course Project wo						
	4	Seminar report: N						
	5	Field Visit Report	NA					

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	2	2	-	2	-	-	-	-	-	-	1	3	1
CO 2	2	3	2	2	2	2	-	-	-	-	-	-	1	3	1
CO 3	2	2	3	2	2	-	-	-	-	-	-	-	1	3	1
CO 4	3	3	3	3	3	3	-	-	-	-	-	-	1	3	1

Knowledge Level	CA	ESE
Remember	-	-
Understand	05	05
Apply	05	05
Analyze	05	05
Evaluate	10	10
Create	-	-
TOTAL	25	25

		Go	vernment College of Engineering, Karad				
	Secon		Electronics and Telecommunication Engineering (Semester	– IV)			
			408 : Microcontroller and Interfacing Lab	·			
Labor	atory Sche	me	Examination Schen	ne			
Practic	cal	2 Hrs/week	TA/CA 2.	5			
Total	Credits	1	ESE 2	5			
	e Outcome						
Student	Will be abl						
1.			embly level programming of microcontrollers.				
2.		microcontroller readigital converters;	l time interfaces including GPIO, serial ports, digital-to-analog conve	erters and			
3.	Examine the	he performance of d	ifferent microcontrollers to choose suitable microcontroller for a give	n application.			
4.			combination of hardware and software to address the real life problem				
			List of Experiment				
Exper 1 8	riments 2 2		ting the various addressing modes of 8051 for accessing internal as w y and unconditional/conditional branch, loop control instructions.	vell			
Exper	riment 3	Assignment exploi	ting Timers and its applications, PWM generation in 8051 & PIC.				
Exper	riment 4	Serial communicat	ion using PIC & ARM.				
Exper	iment 5	Interfacing of LED	D, LCD with PIC & ARM.				
Exper	iment 6	ADC, DAC interfa	cing using PIC & ARM.				
Exper	iment 7	Buzzer relay and s	tepper motor interface using PIC & ARM.				
Exper	iment 8	Interfacing LM35	with arduino.				
Exper	riment 9	Interfacing differen	nt sensors with Raspberry pi.				
Exper	iment 10	Interfacing of step	per motor & its speed control with PIC/ARM controller.				
Proje	et Work	Open ended course embedded system.	e project work for real life applications based on Microcontroller syste	em/			
List of Subm							
	1	Total number of E	xperiments: 10				
	2	Total number of sh	neets: NA				
	3	Course Project Wo	ork & Report: 01				
	4	Seminar report: NA					
5 Field Visit Report: NA							

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	3	2	-	1	-	-	-	-	-	-	2	2	3
CO 2	2	3	2	1	1	-	-	-	-	-	-	-	2	2	3
CO 3	3	2	3	2	2	1	-	-	-	-	-	-	3	2	3
CO 4	2	2	2	2	1	-	-	-	-	-	-	-	1	2	3

Knowledge Level	CA	ESE
Remember	05	
Understand	05	05
Apply	05	05
Analyze	10	05
Evaluate	-	05
Create		05
TOTAL	25	25

		Go	overnment College o	of Engineering,	, Karad	
	Seco	nd Year B. Tech.	Electronics and Tel	ecommunicatio	on Engineering (Sen	nester – IV)
<u> </u>			nals, Network Anal	ysis and Synth		
	ratory Sch				Examination	
Practi	cal Credits	2 Hrs/week			TA/CA ESE	25 25
	se Outcom				ESE	23
	t Will be ab					
1.		se network theorems	for DC/AC circuits			
2.			RL and RLC circuits for	or given input		
3.					nd transfer functions of	two port network
4.			as per real time requir	rements.		*
				of Experiment		
			0	s and Systems		
Experi	ment 1	Introduction to MA MATLAB	ATLAB, understand va	rious functions in	n MATLAB, programn	ning using
Experi	ment 2	Introduction to MA MATLAB	TLAB, understand var	tious functions in	MATLAB, programm	ing using
Experi	ment 3	Signal graph plottin study the Periodicit		n lable and y lab	le, Basic Operation of	signal, To
Experi	ment 4	0	operations on Trigonor e Scaling, Amplitude S	U	ed Operations.	
Experi	ment 5	0 0	(t) and x2(t) find its ev f even and odd signals.		ponent and show that th	e original
Experi	ment 6	Sawtooth Wave Ge	neration using fourier	series.		
Experi	ment 7	To perform convolu	ution of discrete time s	ignal and continu	ous time signal.	
Experi	ment 8	Find Laplace and in	verse Laplace for give	en standard signal	l and function.	
				nalysis and synt	hesis	
Exper	riment 1	Perform, analyze	and verify superpositio	n theorem.		
Expe	riment 2	Perform, analyze	and verify Thevenin/Ne	orton theorem wi	th dc sources.	
Expe	riment 3	Perform and verif	y Maximum power tran	nsfer theorem wit	th dc sources.	
Expe	riment 4	Perform an experi response of circuit		rcuits with step v	oltage input and find the	ransient
Expe	riment 5	Perform an experi damped and over		vith step voltage i	nput for underdamped.	, critically
Expe	riment 6		ment on RLC circuit as sinusoidal ac input.	nd determine free	quency response of cur	rent in
Expe	riment 7	Perform an experi for any two port n		ork and determin	e Z, Y, h and ABCD p	arameters
Exper	riment 8		ment on network funct port ladder network.	ions and determi	ne driving point and tra	ansfer
Exper	riment 9	••••	e and verify Passive filten filter specifications.		gh-pass filter, Band-pas	ss/Band-

Experiment 10	Design and simulate experiments relevant to the syllabus (any two) using tools like Pspice/multisim/scilab/MATLAB.	
List of		
Submission		
1	Total number of Experiments: 18	
2	Total number of sheets: NA	
3	Project/Dissertation Report: 00	
4	Seminar report: NA	
5	Field Visit Report: NA	

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	3	2	1	2	1	-	-	-	2	1	-	1	2	1	-
CO 2	2	2	3	2	1	-	-	-	2	1	-	1	2	1	-
CO 3	3	2	3	2	1	-	-	-	2	1	-	1	2	1	-
CO 4	3	2	3	3	1	-	-	-	2	1	-	1	2	1	-

Knowledge Level	CA	ESE
Remember	-	-
Understand	05	5
Apply	05	5
Analyze	05	5
Evaluate	10	5
Create	-	5
TOTAL	25	25

			Government	College of E	ngineering, Ka	rad		
	Sec	cond Year B. 7				Engineering (Semes	ster –IV)
			EX2410) : Environm	ental Science			
	hing Sche					Examination Sch		
Lectu		02 Hrs/week				CT - 1	15	
Tutor						CT – 2 TA	15 10	
Total	Credits	00(Audit)				ESE	10 60	
						Duration of ESE	00 Hrs	30 Min
Cour	se Outcon	nes (CO)				Duration of LSL	02 1113	50 Willi
	nt Will be a							
			oncepts from Ecor	nomic, and Soc	ial analysis as the	ey pertain to design an	d evaluat	tion of
		ntal policies and		,	5			
				s from ecologie	al and physical so	ciences and their appli	ications in	n
		ntal problem solv						
3. S	Student wil	l appreciate the	ethical, cross cultu	ural and histori	cal context of env	vironmental issues and	l the links	8
		man and natural						
				and identities	as citizens, consu	mers, environmental	actors in	а
c	complex an	d interconnected	d world.	Course Cor	40m4a			Hanna
Unit	1 Natur		nd Associated Pr	Course Con	tents			Hours
Omt			importance. Multi		ature of environm	ental studies		(06)
		for public aware		iuiscipinary n		ciltar studies		
		A		r-exploitation.	deforestation. dar	ns and their effects or	n forests	
		ibal people.		· · · · · · · · · · · · · · · · · · ·	,			
	b) Wa	ater resources: U	se and over-utilization	ation of surface	e and ground wate	er, floods, drought, con	nflicts	
			efits and problems					
	c) Mi	neral resources:	Usage and exploit	tation. Environ	mental effects of	extracting and using r	nineral	
	resour						1.	
			•	, changes caus	ed by agriculture	effect of modern agric	culture,	
		zer-pesticide pro		eeds renewah	e and nonrenewal	ble energy resources,	use of	
			ces. Solar energy,					
						andslides, soil erosion	and	
		ification.	· · · · · · · · · · · · · · · · · · ·	6	,			
Unit	2 Ecosy	stems:						(06)
						. Producers, consum		
						Food chains, food w	ebs and	
			Introduction, types		es features,			
			of the following of the		tacaratam			
			b) Grassland ecosys (ponds, streams,					
Unit		versity and its		lakes, livels, v	ceans, estuaries).			(06)
Omt		•		s and ecosyste	n diversity. Bio-g	eographical classifica	tion of	(00)
						hical, aesthetic and op		
	values	s. India as a meg	ga-diversity nation	. Western Gha	t as a biodiversity	region. Hot-spot of		
						nan-wildlife conflicts.		
				ia. Conservatio	on of biodiversity:	: In-situ and Ex-situ		
TT • 1		rvation of biodiv	•					
Unit		onmental Pollu		manager A	in pollution Wet-	nollution and noll-	tion	(06)
			se pollution, Ther			er pollution, soil pollut	u011,	
						n and industrial waste	s. Role	
			vention of pollution					
Unit		l Issue and Env						(06)
				ke, cyclone, tsu	nami and landslic	des. Urban problems r	elated	
	to ene	ergy Water conse	ervation, rain wate	er harvesting, w	atershed manage	ment Resettlement an		
						cs: Issue and possible		
						ironment, sustainabili	ty	
			holocaust. Wastel	and exclamati	on.			
	Const	imerism and wa	ste products.					

Uni	Environmental Protection : From Unsustainable to Sustainable development. Environmental Protection Act. Air (Prevention and Control of Pollution) Act. Water (Prevention and control of Pollution) Act. Wildlife Protection Act. Forest Conservation Act. Population Growth and Human Health, Human Rights, Environment Impact Assessment, Green Tribunals.							
Tut	orials							
	Visit to a local area to document environmentalassets-river/Forest/Grassland/Hill/Mountain.							
	OR							
	Visit to a local polluted site -Urban / Rural / Industrial/Agricultural.							
	OR States for a last in the line							
Tor	Study of common plants, insects, birds.							
1.	Text Book of Environmental Studies by Dr. P.D. Raut from Shivaji University. (Edition 2013)							
1. 2.	Concise Environmental Studies by Dr. Madhukar Bachulkar, B.V.Kulkarni, Sharvil A Shah R.K Publication	IS .						
4.	(Edition 2014)	15						
3.	Miller T.G. Jr., Environmental Science. Wadsworth Publications Co. (Edition 2007)							
	erence Books							
1.	Agarwal, K.C.2001, Environmental Biology, Nidi Pub. Ltd., Bikaner. (Edition 2011)							
2.	Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahemdabad 380013 India (Edition	2008)						
3.	Cunningham, W.P. Cooper, T.H.Gorhani, E. & Hepworth, M.T.2001, Environmental Encyclopedia, Jaico P Mumbai, 1196p (Edition 2010)	ub.						
4.	De A.K., Environmental Chemistry, Wiley Wastern Ltd. (Edition 2014)							
5.	Trivedi R.K. Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards, vol. I and Environmental Medi	II,						
Use	ful Links							
1.	www.mpcb.gov.in							
2.	www.cpcb.nic.in							
3.	www.downtoearth.org.in							

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	1	-	2	-	1	1	1	-	-	-	2	1	-	-	-
CO 2	2	-	1	-	2	1	2	-	-	-	-	1	-	-	-
CO 3	1	-	1	-	1	1	2	-	-	-	1	1	-	-	-
CO 4	1	-	2	-	1	1	1	-	-	-	-	2	-	-	-

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	3	3	1	12
Understand	3	3	1	12
Apply	3	3	2	12
Analyze	3	3	2	12
Evaluate	3	3	2	12
Create			2	
TOTAL	15	15	10	60

			Go	vernment College of Engir	eering, Ka	rad					
		Secon	d Year B. Te	ch. Electronics and Telecon EX2411 : Technical Pre		on Engineering (Ser	mester –IV				
	Topo	hing So	ahomo	EA2411: Technical Pres	sentation	Examination	Sahama				
	Lecture		cheme			Scheme					
	Tutorial		- 01 Hr./week			CT - 1 CT - 2					
	tal Cree		01 III./ WCCK			TA	25				
10		ans	01			ESE	25				
						Duration of ESE					
Cours	se Outco	omes (C O)								
	nt Will b	× *									
1.	Underst	and the	importance of	presentations and their inherent p	problems and	Identify the audience, p	purpose,				
	Organiz	ation, f	low, style, and d	delivery of presentations.							
2.				on publications, presentation reso	ources and dat	ta and use advanced pro	esentation				
2				report and presentation	.1 .						
3.			1	presentation with confidence and	authority.						
4.	Unders	stand no	ow to deal with	questions from the audience Course Conter	40		Hour				
T1	h	T., 4h.									
	hnical ntation			nts will carry literature review one interest in Electronics and T							
riese	Intation	2									
		prepare literature review report which will be consisting of methodology/strategy/algorithms, findings, conclusions, limitations given in each paper. In executive summary of report student									
				and will give their suggestions							
				entation skills needed to present							
		Review. Students are expected to give a fifteen-minute presentation related to their report. This presentation will be in English. Students will focus on the language needed during each									
		part of the presentation (opening, outline, background, materials/methods, results, discussion,									
				&A). By analyzing the language used in a model presentation given at a real-							
			world engineering conference, students will learn many of the common features of presentation								
				p confidence to deliver their ow							
		also p	practice the targ	et language through a series of	short pair and	l group activities, and	work				
		towar	d a final present	tation related to their field of inte	erests. It will a	accurately reflect the					
		prese	ntation that stud	ents will need to give at an acade	emicconferen	ce.					
Tutor	rials										
					•	ſ					
Text]											
1	IEEE	transac	tion papers from	GCEKarad Digital Library							
2	Garr I	Reynol	ds; Presentation	Zen, Simple Ideas on Presentati	on Design an	d Delivery; New Riders	s publication,				
	2nd E	dition		-	-	•					
3			ufte; The Visua	l Display of Quantitative Inform	ation, Graphi	c Press, 2 nd Edition					
	ence Bo										
1.	Brian	Tracy;	How to Present	t With Power in Any Situation, M	AcGraw-Hill	publication					

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	3	1			3	1	2		3	3	2	2	1		
CO 2						1		1	2	3	1	3			
CO 3	3				2			1	2	1		3	2		
CO 4	1	1						1	2	3		3			

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	8	-
Understand	-	-	8	-
Apply	-	-	3	-
Analyze	-	-	2	-
Evaluate	-	-	2	-
Create	-	-	2	-
TOTAL	-	-	25	-