			C	vernment Colle	ge of Engineer	ing Kars	ad.		
				ear (Sem – V) B					
			MIL	2501: Open Ele	cuve -Operano	nis Kesea	ircii		
Toools	in a Cal						Everyingtion Co.	la como c	
	ing Sch	eme	02 11/1-				Examination Sc		
Lectur			03 Hrs/week				CT - 1	15	
Tutori							CT – 2	15	
Total	Credits		03				TA	10	
							ESE	60	0.3.4
	0 1						Duration of ESE	02 Hrs 3	0 Min
	se Outco			911					
			rse the students						
1.			uantitative techn	iques in managem	ent decision-mak	king and its	s applications by u	ising mathe	ematical
_	models				1.1				
2.				Transportation pr					
3.				sion theory proble	m				
4.	Design	netwo	rk by CPM / PE						T
				C	ourse Contents				Hours
Un	it 1		duction	.					
							ions, Types of C		(02)
				plications in prod	uction managem	ient, Use o	of computers in C	perations	
**	• •	resear							
Un	it 2		r Programmin		.1 1 6' 1	4			
							nm for maximiza		(07)
					nalysis, Duality	theory	and its use in	economic	
	• •		retation and dec						
Un	it 3						pplications, Trans		(06)
T 7	• 4			methods to solve t	ransportation pro	blems, De	generacy and its so	olution.	` ′
Un	it 4	U	nment Models	1 .: 6 :			11' 0 1	1.1	(06)
**	•			solution of variou	s types of proble	ems, Trave	lling Salesman pro	blem	
Un	it 5		encing	12 12 1:	2:1 1	1 .			
				and 2 and 3 machin	ies, 2 jobs and n	macnines			(06)
			ion Theory	las Danisian mulas	Danisian undan	aantaintee a	and mistr. Desision	tuaa	
T I	:4 (, Decision under	certainty a	and risk, Decision	tree.	
Un	it 6		ct Management		dra CDM asses		of materials Cuit	ملامس امد	
							of networks, Criticisme estimates, con		(09)
				•	_		ime estimates, coi	istruction	
		or net	works, probabili	ty of completing p	rojects by given	uate.			
Text 1	Rocks								
1 ext 1		0	parations Dassar	eh – P. Sankara Iye	r (TMH Siama	Sories 200	J6/		
	1. 2.			•			,		
	3.			<u>ch- Hira Gupta-(S</u> ch – J.K. Sharma. (1.0		
	3. 4.						llips & Solberg (Je	ohn Wile	& Sons
	7.	_	iley India, 2006)	n – rincipies &	ractice - Kavil	iuiaii, Piill	mps & Solverg (J	omi wily o	x 30ffs,
	5.			norotions Dassers	h Thooms 0- A-	nnlications	s, - H.S. Kasana	& VD	Vuman
	5.			•	•	pprications	ь, - п.э. Kasana	α N.D.	Kuillar,
Dofor	ence Bo		ninger miernati	onal Edition, 2005,	springer maia)				<u> </u>
Keter			roduction to O	7/a (with CD)	Handy A Tala	(DLII) 201	 16		
	1.			R., 7/e (with CD) –					
	2.			iques in Managem					
	3.			2., 7/e (with CD) –			1)4009		
	<u>4.</u>			ch, 2/e – R. Pannee			D 0-T:1: A		Dagmar
	5.	_		cii – Inatarajan,	A.IVI.; Balasub	namanı, 1	P. &Tamilrasi, A	1. (Pearson
	6		ucation)2005	h Annliantians C	Algorithma 4/	'o W	o I Winston (CE	NCACET	000001
	6.	_		m- Applications &	c Aigorimms, 4/	e, - wayn	e L. Winston (CE	NUAUE L	Learning
		20	03)						

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	3	2	1	-	-	-	1	1	1	-	-	2	2	2	3
CO 2	3	3	3	1	2	1	-	-	1	-	1	2	2	2	3
CO 3	3	2	3	-	2	-	-	-	1	-	-	2	2	2	3
CO 4	3	3	1	-	3	-	-	-	-	-	-	2	2	2	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	3	3	2	10
•	3	3	1	16
Apply	4	4	3	10
Analyse	3	3	2	12
Evaluate	2	2	2	12
Create	0	0	0	00
TOTAL	15	15	10	60

		C	overnment College of Engineerin	ng Karad		
			ear (Sem –V) B. Tech. Mechanic	<u> </u>		
			IE 2502 : Metrology and Quality	0		
			11 2002 : Weet Glogy and Quarty	Control		
Teacl	hing Sch	neme		Examina	ation Scheme	<u> </u>
Lectu		03 Hrs/week		CT – 1	15	
Tutor	ials			CT – 2	15	
Total	Credits	03		TA	10	
				ESE	60	
				Duration	of ESE 02 Hrs 3	0 Min
Cour	se Outc	omes (CO)				
1	T æ	1: 11	1:	• • • •	1 .	
1.			vorking principle, construction of mea		and comparators	
2. 3.			on of geometrical parameters according quality assurance concept	ig to a drawing		
<u> </u>			rts and sampling plans in industry			
7.	10 0		Course Contents			Hours
Uı	nit 1	Introduction	Course Contents			(8)
	110 1		recision, accuracy, methods and error	s in measurement,	calibration	(0)
		Linear Measuremer	•	,		
			ds of length, line and end measure	ement, characterist	ics of measuring	
		instruments, slip gaug				
		Angular Measureme				
			it level, angle gauges, sine bar, sine c	entre, angle dekkoi	r, auto collimator,	
		standard balls and rol	lers for angle measurement			
T I.	nit 2	Limits, Fits and Tol	omo n a a a			(9)
UI	mt 2	,	system in mass production, IS spe	cifications of limi	ts unilateral and	(9)
		•	cost-tolerance relationship, types of			
		assembly	toterance relationship, types or	merading nar	nerical), types of	
		Limit Gauges				
			gauging, types, Taylor's principle, d	esign of plug and	ring limit gauges	
		(including numerical)	, three types of limit gauges			
		Comparators				
		Need for comparator				
			, its uses in inspection and characteris	stics of		
			dial indicator, sigma comparator)			
		ii. Optical (optical)	cal profile projector, Toolmaker's mic	roscope)		
		iv. Pneumatic co				
		Interferometry	impurator			
			netry and application for checking fla	tness		
		1				
Uı	nit 3	Geometric paramete				(8)
			stics of form (straightness, flatness,		• -	
			dicularity, angularity), location (•	ricity, coaxiality,	
			ut (circular run-out, total run-out) (IS	O- 1101)		
		CMM Machine	to Massaurina Mashinas (CMM) diff		of CMM amon	
		•	ate Measuring Machines (CMM), differentiate probing system, automated inspection	•	is of Civilvi, effor	
H	nit 4	Surface Roughness	proofing system, automated inspection	n system		(9)
O1	T T	U	ace textures, numerical assessment of	of surface roughne	ss. surface finish	
		_	length, grades of roughness, instru	•		
			on surface meter, Mitutoyo surface ro		6	
		Measurement of Sci		,		
			ology, measurement of forms of t			
			rement of thread diameters with stan-	dard wire, screw th	nread micrometer,	
		different errors in scr	ew threads			
		Gears	1 41 1	1.1		
		ivieasurement of tool	h thickness measurement, run out cl	necking, pitch mea	surement, profile	

	checking, backlash checking, alignment checking, checking of composite errors, errors in gears								
Unit 5	Quality Control	(8)							
Omt 5	Concept of quality, role of quality, Deming's approach, Juran's approach, quality control and quality assurance, specification of quality, factors controlling quality of design and conformance, cost of quality, balance between cost and quality and value of quality Quality Assurance Seven QC tools, Quality Circles, Kaizen, six sigma, 5S system, Introduction to Business Process Reengineering (BPR)								
Unit 6	Statistical Quality Control	(8)							
	Importance of statistical method in quality control, ND curve, Control charts- Attribute (P, nP, C, U) and variable (X bar, R chart and X and R chart), their constructions, interpretation and applications, process capability index (C _p , C _{pk}), methods of determining C _p and C _{pk} Acceptance Sampling Basic concept of sampling inspection, operating characteristic curves (OC curve), conflicting interests of consumer and producer, producer and consumers risks, single and double sampling plans								
Text Books									
1.	"Engineering Metrology", I. C. Gupta, Dhanpat Rai Publications, 7th Edition								
2.	"Engineering Metrology", R. K. Jain, Khanna Publications, 17th Edition								
3.	"Statistical Methods", S. P. Gupta, Danpat Rai and Sons, New Delhi, 2007	•							
Reference B									
1.	"Engineering Metrology and Measurements", N. V. Raghvendra and L. Krishnamurthy, publication, 2013 Edition	Oxford							
2.	"Practical Engineering Metrology", Sharp K.W.B., Pitman, London, 1966								
3.	"Statistical Quality Control", A. L. Grant, Tata McGraw Hill International, New York. 6th Edi	tion							
4.	"Statistical Quality Control", R. C. Gupta, 9th Edition								
5.	"Engineering Metrology", Hume K. G., M. C. Donald, Technical and Scientific, Lond Edition.	don, 2 nd							
6.	"Quality Control and Industrial Statistics", Duncon A. J., Publisher- R. D. Irwin, 4 th Edition								
Useful Links									
1.	NPTEL Lecture: http://www.nptelvideos.in/2012/12/mechanical-measurements-and-metrology.html								
2.	Video of Metrology:								
	https://cosmolearning.org/courses/mechanical-measurements-and-metrology/								

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	2	1	-	-	-	-	-	-	-	2	2	2	2
CO 2	2	2	2	1	1		-	-	-	-	1	2	2	2	2
CO 3	3	3	3	1	1	1	-	1	1	1	1	2	2	2	2
CO 4	3	3	3	1	1	1	-	-	-	-	-	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	2	2	1	08
Understand	4	4	1	16
Apply	3	3	3	12
Analyse	2	2	3	08
Evaluate	2	2	2	08
Create	2	2	1	08
TOTAL	15	15	10	60

	Government College	of Engineering, Karad	
		Mechanical Engineering	
		Heat Transfer	
Teaching	1	Examination Scheme	
Lectures	03 Hrs/week	CT – 1 15	
Tutorials		CT – 2 15	
Total Cre	dits 03	TA 10	
		ESE 60	
		Duration of ESE 02 Hrs 30) Min
Course O	outcomes (CO)		
1.		rinciples/laws of heat transfer by conduction, convect	ion, and
2	radiation and mass transfer by diffusion and co		1: 66
2.		ommon engineering processes and significance of o	different
2	dimensionless numbers related with heat and m		
3.	computer software	d analysing simple heat and mass transfer problem	is using
4.		elopments such asin the field of heat and mass tra	nefer to
7.	cope up with requirements of industry.	sopments such as in the field of fleat and mass tra	ilisici to
		e Contents	Hours
Unit 1	Introduction to Heat Transfer		8
			-
	Modes of Modes/laws of heat transfer, thermo-		
		duction equation in Cartesian coordinates, Fourier,	
	1	eat conduction equation in cylindrical and spherical	
	co-ordinates. (no derivation).		
Unit 2	Heat conduction through a plane wall cylin	drical wall and sphere. Heat conduction through a	7
Omt 2	* *	of variable thermal conductivity, critical radius of	,
	insulation, Economic insulation, and thermal co	· · · · · · · · · · · · · · · · · · ·	
		with heat generation for plane wall, cylinder and	
	sphere.	with near generation for plane wan, cylinder and	
	spilete.		
Unit 3	Extended Surfaces Types and Applications of	Fins, Heat transfer through extended surfaces,	6
	•	s and heat transfer through fins of constant cross-	
	sectional area, Effectiveness and efficiency of a	a fin, Errors in the measurement of temperature in a	
	thermo-well.		
	Unstandy state heat conduction System with	naclicible intermal resistance Diet and Fourier	
	Unsteady state heat conduction System with a numbers. Lumped heat capacity method, use of		
	numbers. Lumped heat capacity method, use of	Tiersier charts.	
Unit 4	Convection		7
	· ·	odynamic and thermal boundary layer, Laminar	
	and turbulent flow over a flat plate and through	a duct, Friction factor, Drag and drag co-efficient.	
	Free and Forced Convection Dimensional and	alveis in free and forced convection physical	
	Free and Forced Convection Dimensional and		
	significance of the dimensionless numbers relations for free and forced convection for	heat transfer in laminar and turbulent flow over a	
		ondensation and Boiling, pool boiling, critical heat	
	flux, burnout point, forced boiling. Film and dr		
	transfer coefficient.	op wise condensation, determination of ficat	
	transfer coefficient.		
Unit 5	Radiation		6
	Nature of thermal radiation, absorptivity, 1	reflectivity, transmissivity, emissive power and	
		ody, grey body, and white body Kirchhoff's law,	
		of Stefan Boltzmann law. Lambert cosine rule,	
		radiation between two black surfaces with non-	
		ce of reradiating surfaces. Shape factor and its	
		n between two grey surfaces without absorbing	
	medium, concept of radiosity and irradiation	n. Radiation network method, network for two	

	surfaces which see each other and nothing else, radiation shields.	
Unit 6	Heat Exchangers, Phase Change and Mass Transfer Phenomenon	6
	Heat exchangers classification, overall heat transfer coefficient, heat exchanger analysis, use of	
	log mean temperature difference (LMTD) for parallel and counter flow heat exchangers, LMTD	
	correction factor, fouling factor, The effectiveness-NTU method for parallel and counter flow heat	
	exchangers. Design considerations of heat exchanger, compact heat exchangers.	
	Introduction to Design of thermal system: Electronic component cooling	
	Boiling and Condensation (Descriptive treatment only)	
	a. Types of boiling, Pool boiling and Forced convection boiling, Nusselt's theory of	
	condensation for vertical plate, Condensation correlations for practical applications, Film	
	wise and drop wise condensation, promoters.	
	Introduction to Design of thermal system: Electronic component cooling	
	Introduction to mass transfer: Analogy with Heat transfer (Descriptive treatment only)	
Text Boo	ks	
1.	"Heat Transfer", J.P. Holman, Tata McGraw Hill Book Company, NewYork, 2 nd Edition.	
2.	"Fundamentals of Heat and Mass Transfer", R.C. Sachdeva, Willey Eastern Ltd.,	
3.	"A Text Book on Heat Transfer", Dr. S. P. Sukhatme, Orient Longman, Hyderabad.	
Reference		
1.	"Heat Transfer – A Practical approach", Yunus. A .Cengel, Tata McGraw Hill.	
2.	"Heat Transfer" Chapman A.J., Tata McGraw Hill Book Company, New York.	
3.	"Fundamentals of Heat and Mass Transfer", Frank P.Incropera, David P.Dewitt, Wisley India. 5th Edi	tion.
Useful Li		
1.	http://www.sciencedirect.com/science/bookseries	
2.	http://www.thermalfluidscentral.org/e-books	
3.	http://www.elsevier.com/books/advances-in-heat-transfer	

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO	PO	PO	PSO	PSO	PSO
CO↓										10	11	12	1	2	3
CO 1	3								2	1		1			1
CO 2	3		3		3			2							
CO 3			3					2		1					
CO 4			3	·		·		2	·						

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	2	2	0	08
Understand	4	4	1	16
Apply	3	3	3	12
Analyse	2	2	3	08
Evaluate	2	2	2	08
Create	2	2	1	08
TOTAL	15	15	10	60

		G	overnment Colleg	ge of Engineering, Ka	arad		
				Tech. Mechanical E			
		Time 1		achine Design – I	ignicering		
			1/11/2/504.1/1	define Design 1			
Teachin	g Scheme				Examination Sch	eme	
Lectures		03 Hrs/week			CT – 1	15	
Tutorials					CT – 2	15	
Total Cr		03			TA	10	
Total CI	Cares	0.5			ESE	60	
					Duration of ESE	02 Hrs 3	0 Min
Course	Outcomes (CO)			2 0.1001011 01 2.52	02 1115 0	0 111111
		ırse, student will	be able to:				
1.				dure of machine elemen	its.		
2.				different machine elem			
3.				ading and fluctuating loa			
4.	O		3	jected to static and varia			
-				ese Contents			Hours
Unit 1	A. Int	roduction to M					(06)
				edure of design of mach	ine elements, use of s	standards	()
		design	5 / F 5	<i>y</i>	, , , , , , , , , , , , , , , ,		
		gineering Mate	rials				
	Rev	view and selection	on of various engin	eering material propertic	es, factors governing	selection	
	of o	engineering mat	erials, BIS designat	tion of steels, Alloying	elements in steels an	d effects	
	and	l applications					
			nensional Stress				
	Cartes	ian stress comp	onents, 2D- stress	tensor, 3D-stress tens	or Plane stress, plan	e strain,	
			esses at a point from				
Unit 2			nd Fluctuating Lo	ading			(08)
		esign for Static 1					
				y- its selection and signif	ficance, theories of		
			heir applications				
		•	_	er joint, design of levers	3		
		esign for Fluctu					
				nanism of fatigue failure			
			<u> </u>	urance limit, endurance	• •		
				ity, fluctuating stresses,			
				under reversed stresses		ın	
	fat	igue failure, Sod	erberg and Goodi	nan diagrams, Modified	Goodman diagram		
TI24 2	D	Cl J. J. XX7.1.J	. J J D				(0.0)
Unit 3	_	Threaded, Weld readed Joints &	ed and Power scre	ews			(06)
				alogy of somery threeds	haltad isint simple	amalroia	
		* *	•	nology of screw threads		•	
				shear, eccentric load p f bolted joint, bolted join			
				, strength of butt welds,			
				elds, welded joints subje			
			ted to fluctuating fo	-	cted to bending moni-	J11t,	
	WCI	iaca joint subjec	ica to mactualing 10	1000			
	R N ₄	esign of Power S	Screw				
		_		s, torque requirement (1	ifting and lowering lo	oad) self-	
				efficiency of square t			
				friction torque, design			
	•		culating ball screw	torque, design	of power seren a		
Unit 4		Springs and Pov					(07)
		esign of Springs					
				les of end, design of hel			
			•	ical springs, the curvatu	re effect, deflection o	f helical	
			design against fluct	uating load			
Unit 5	D . CC	11 C4 T7 1	Couplings				(06)

	D' C 1'1 11 11 1 C 1 1										
	Design of solid and hollow shafts based on strength and rigidity, ASME code for shaft design,										
	types and design of keys, types and applications of couplings, design of muff, rigid coupling,										
T 7 1/ 6	flexible bushed pin type flanged coupling.	(07)									
Unit 6	Belt drives: Types and construction of belts, selection of flat belt and V belt from manufacturer's catalogue, pulleys for flat and V belts, ribbed V belts Chain Drives: Chain drives, roller chains, geometrical relationships, polygonal effect, power rating of roller chains, sprocket wheels, design of chain drive, chain lubrication Rope Drives Construction and lay of wire rope, stresses in wire rope, rope sheaves and drums										
Tutorial											
	nents on each Unit - 6 Nos.										
Assigini	ichts on each Omt - 0 1005.										
Text Bo	oks										
1.	• "Design of Machine Elements", V.B.Bhandari., Tata McGraw Hill Publication, 3rd Edition										
2.											
3.	" Machine Design An Integrated Approach", R.L Norton, Pearson Education Publication, Edition.	, 3rd									
4.											
	ce Books										
1.	"Machine Design", Hall, Holowenko Laughlin, Tata McGraw Hill Publication Schaum's Ou Series.	utline									
2.	. "Machine Component Design", Robert C. Juvniall, Willey Ltd., 5th Edition										
3.	1 0 7										
Useful L	inke										
1.											
2.	1 0										
3.											

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	2	1	-	1	1	-	-	-	1	2	2	2	2
CO 2	2	2	2	1	1		-	-	-	-	1	2	2	2	2
CO 3	3	3	3	1	1	1	-	1	1	1	1	2	2	2	2
CO 4	3	3	3	1	1	1	-	-	-	-	-	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	1	1	1	05
Understand	3	3	2	10
Apply	4	4	2	10
Analyse	3	3	2	15
Evaluate	3	3	2	15
Create	-	-	1	05
TOTAL	15	15	10	60

		Cov	vernment College of Engineering, Ka	rad		
			ar (Sem – V) B. Tech. Mechanical En			
			5: Elective – I Non-conventional Ma			
		WIE2513	5: Elective – 1 Non-conventional Ma	cining		
Teach	ing Schen	16		Examination Sch	eme	
		03 Hrs/week		CT – 1	1	
Lectu		US HIS/Week		CT – 1 CT – 2	15 15	
	Credits	03		TA	10	
Total	Credits	05		ESE	60	
				Duration of ESE	02 Hrs	30 Min
Cours	se Outcom	es (CO)		-	•	
At the	end of thi	s course, student will be	able to:			
			and non-traditional machining process and	d recognize the need	for Non-	traditional
	achining p					
			the need of Chemical and electro-chemical			
			ure of the equipment, process parameter	s, process character	istics, ap	plications,
		and limitations EDM	DM	M	1.	- C · 1
	nderstand moval.	tne LBM equipment, L	LBM parameters, and characteristics. EBI	vi equipment and m	ecnanism	of metal
re	emovai.					
			Course Contents			Hours
Unit	1 Introd	luction	Course Contents			(06)
Omt			nel mechining Need for Non conven	tional machining	2200000	(00)
			and machining, Need for Non-conven			
	_		onal and non-traditional machining, g			
		0 1	esses, classification based on nature of ene		_	
		on of non-convention		dvantages, limitatio	ns and	
		ations of non-traditional				
Unit	2 a)	Ultrasonic Machining	g (USM)			(08)
	Introd	action, Equipment and n	material process, Effect of process paramet	ers: Effect of amplit	ude and	
	freque	ncy, Effect of abrasive	e grain diameter, effect of slurry, tool	& work material.	Process	
	charac	teristics: Material remov	val rate, tool wear, accuracy, surface finish	, applications, advan	tages &	
	limitat	ions of USM.				
	b)	Abrasive Jet Machin	ing (AJM)			
	1		process of material removal, process var	riables: carrier gas.	type of	
			d-off distance (SOD). Process characteri		• 1	
			ace finish. Applications, advantages & limi		,	
		Water Jet Machining	~ ~	01110111		
		_	on, applications, advantages and limitation	s of WIM		
Unit		ochemical Machining (10 O1 11 J1V1.		(06)
OIII		0		olomonts of ECM ar-	orotion	(00)
		-	tro chemical machining: ECM equipment,	-		
		•	ocess characteristics: Material removal ra	•		
		*	density, Tool feed rate, Gap between tool	*	•	
		•	rolyte, its concentration temperature, and	•		
		-	ique & example, Tool & insulation ma			
			d electrochemical honing process. Adva	antages, disadvantag	ges and	
	applica	ation of ECG, ECH.				
Unit	4 Electr	ical Discharge Machin	ing (EDM)			(07)
		_	netal removal, EDM equipment: spark en	rosion generator (rel	axation	
			nctions & desirable properties, electrode for	_		
				•	_	
	types:	pressure flushing, suction	on Hushing, side Hushing, bilised Hushing	L. EDIVI DIOCESS DATA	illieters.	
	• 1		on flushing, side flushing, pulsed flushing ark gap, surface finish, Heat Affected Zone			

Unit 5	Plasma Arc Machining (PAM)	(06)
	Introduction, non-thermal generation of plasma, equipment mechanism of metal removal, Plasma	
	torch, process parameters, process characteristics. Safety precautions, applications, advantages and	
	limitations.	
Unit 6	a) Laser Beam Machining (LBM)	(07)
	Introduction, generation of LASER, Equipment and mechanism of metal removal, LBM parameters	
	and characteristics, Applications, Advantages & limitations.	
	b) Electron Beam Machining (EBM):	
	Introduction, Principle, equipment and mechanism of metal removal, applications, advantages and	
	limitations.	

Tutorials

Assignments on each Unit - 6 Nos.

Text Books

- 1. Modern Machining Process by P.C Pandey and H S Shah, McGraw Hill Education India Pvt. Ltd. 2000
- 2. Non-traditional Machining Processes: Research Advances, Joao Paulo Davim, Springer, New York, 2013.
- 3. Non-Conventional Machining, P. K. Mishra, Narosa Publishing House, New Delhi, 2007.
- **4.** Advanced Machining Processes, Vijaya Kumar Jain, Allied Publishers Pvt. Ltd., New Delhi, 2005

Reference Books

- 1. Production technology, HMT, McGraw Hill Education India Pvt. Ltd. 2001
- **2.** Advanced Machining Processes: Non-traditional and Hybrid Machining Processes, Hassan El-Hofy, McGraw-Hill Professional, New Delhi, 2005

Useful Links

1. https://nptel.ac.in/courses/112/105/112105212/

Mapping of COs and POs

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	2	1	1	-	1	ı	ı	-	1	2	2	2	2
CO 2	2	2	2	1	1		-	-	-	-	1	2	2	2	2
CO 3	3	3	3	1	1	1	-	1	1	1	1	2	2	2	2
CO 4	3	3	3	1	1	1	-	-	-	-	-	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	1	1	1	05
Understand	3	3	2	10
Apply	4	4	2	10
Analyse	3	3	2	15
Evaluate	3	3	2	15
Create	-	-	1	05
TOTAL	15	15	10	60

Taching Scheme Lectures 0.3 Hrs/week CT-1 15 Total Credits 0.3 Hrs/week CT-2 15 Total Credits 0.3 Hrs/week 0.3 Hrs/week 0.0 Hrs/week 0.			G	overnment College of Engineering, Karad	
Teaching Scheme					
Teaching Scheme Lectures 03 Hrs/week CT - 1 15 Tutorials - CT - 2 15 Total Credits 03 TA 10 ESE 60 Duration of ESE 02 Hrs 30 Min First students will be able to 1. Apply knowledge of automation tools and other equipments for manufacturing and assembly components. 2. Select proper type of automation for particular application such as batch production, mass production an assembly lines, etc. 3. Program the PLC as per the requirement of the automation problem and interface the PLC with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation, need of automation, advanced automation functions, levels of automation, industrial control, low-cost automation, advanced automation functions, levels of automation, industrial control, systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. Unit 2 Nasembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. Unit 3 Procumatics and Hydraulics (Overview) A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of programmation (explaining the promantic circuits) Programmable Logic Controllers (PLC). PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ludder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladder diagram, internal relays, holding contacts, always ON always OFF co					
Introduction Automated manufacturing systems, fixed /programmable/ flexible, automation, advanced automation functions, levels of automation, advanced automation for product design for automation analysis of assembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automatios and Hydraulics (Overview) A. Pneumatics Components constructional features, types of cylinders, control valves for direction, programmable Logic Controllers (PLC) input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disages and disadvantages over relays, use of PLC in automation, advantages and disages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages in automation, advantages over relays and interface be over the programmable flexible plant, etc., PLC dimers and industrial applications such as sorting contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational proceedures, contact and coil input output output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages in industrial automation such as sorting contexts, alwa			142	12 2020. Elective 1 industrial rationality	
Introduction Automated manufacturing systems, fixed /programmable/ flexible, automation, advanced automation functions, levels of automation, advanced automation for product design for automation analysis of assembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automatios and Hydraulics (Overview) A. Pneumatics Components constructional features, types of cylinders, control valves for direction, programmable Logic Controllers (PLC) input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disages and disadvantages over relays, use of PLC in automation, advantages and disages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages in automation, advantages over relays and interface be over the programmable flexible plant, etc., PLC dimers and industrial applications such as sorting contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational proceedures, contact and coil input output output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages in industrial automation such as sorting contexts, alwa	Tooch	ing Sob	nomo	Evamination Schomo	
Total Credits 03 TAA 10 Course Outcomes (CO) The students will be able to 1 Apply knowledge of automation tools and other equipments for manufacturing and assembly components. 2. Select proper type of automation for particular application such as batch production, mass production assembly lines, etc. 3. Program the PLC as per the requirement of the automation problem and interface the PLC with real-time system showledge of automation. Course Contents Unit 1 Introduction Automated manufacturing systems, fixed /programmable/ flexible, automation, need of automation, basic elements of automated systems-power, program and control, low-cost automation, abasic elements of automated systems-power, program and control, low-cost automation, advanced automation functions, levels of automation, industrial control systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. Unit 2 Assembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. Unit 3 Pneumatics and Hydraulics (Overview) A. Pneumatic: Components, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation, advantages and disadvantages over relays, use of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components of put automation, advantages and disadvantages of programmable automation basic components of put automation, advantages and disadvantages of programmable automation basic components in programmable Logic Controllers (PLC) Introduction to Progra					
Total Credits			US HIS/Week		
Course Outcomes (CO) The students will be able to 1. Apply knowledge of automation tools and other equipments for manufacturing and assembly components. 2. Select proper type of automation for particular application such as batch production, mass production an assembly lines, etc. 3. Program the PLC as per the requirement of the automation problem and interface the PLC with real-time system for automation. 4. Interface the software tool with real-time system using I/O interface for automation. Course Contents Unit 1 Introduction Automated manufacturing systems, fixed /programmable/ flexible, automation, need of automation, basic elements of automated systems-power, program and control, low-cost automation, advanced automation functions, levels of automation, outratic cornor systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. Unit 2 Assembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. Unit 3 Pneumatics and Hydraulics (Overview) A. Pneumatic: Components, constructional details, rilter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the hydraulic circuits) B. Hydraulics: Pumps and motors-types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) B. Hydraulics: Pumps and motors-types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of P					
Duration of ESE 02 Hrs 30 Min	Total (Credits	03		
Course Outcomes (CO) The students will be able to 1. Apply knowledge of automation tools and other equipments for manufacturing and assembly components. 2. Select proper type of automation for particular application such as batch production, mass production an assembly lines, etc. 3. Program the PLC as per the requirement of the automation problem and interface the PLC with real-time system systems to the automation. 4. Interface the software tool with real-time system using I/O interface for automation. Course Contents Unit 1 Introduction Automated manufacturing systems, fixed /programmable/ flexible, automation, need of automation, basic elements of automated systems- power, program and control, low-cost automation, advanced automation functions, levels of automation, industrial control systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. Unit 2 Assembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. Unit 3 Penematics and Hydraulics (Overview) A. Pneumatics and Hydraulics (Overview) A. Pneumatics and Hydraulics (Overview) A. Pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors-types, characteristics, cylinders, types, typical construction details, valves for circuits of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) B. Hydraulics of the hydraulic circuits of the programmable Logic Controllers (PLC) Introduction to Programming methods, fundamentals of ladder dagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders					
The students will be able to Apply knowledge of automation tools and other equipments for manufacturing and assembly components.				Duration of ESE 02 H	rs 30 Min
1. Apply knowledge of automation tools and other equipments for manufacturing and assembly components. 2. Select proper type of automation for particular application such as batch production, mass production an assembly lines, etc. 3. Program the PLC as per the requirement of the automation problem and interface the PLC with real-time system for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation, low-cost automation, advanced automation industrial control systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. 4. Assembly Automation 4. Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. 5. Pheumatics and Hydraulics (Overview) 6. A. Pneumatics and Hydraulics (Overview) 7. A. Pneumatics and Hydraulics (Overview) 8. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) 6. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical constructio					
2. Select proper type of automation for particular application such as batch production, mass production an assembly lines, etc. 3. Program the PLC as per the requirement of the automation problem and interface the PLC with real-time system for automation. 4. Interface the software tool with real-time system using I/O interface for automation. Course Contents Introduction Automated manufacturing systems, fixed /programmable/ flexible, automation, need of automation, abasic elements of automated systems- power, program and control, low-cost automation, advanced automation functions, levels of automation, industrial control systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. Unit 2 Assembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. Unit 3 Pneumatics and Hydraulies (Overview) A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulies: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladder sPLC input instructions, outputs, coils, indicators, operationa	The str	udents v	will be able to		
assembly lines, etc. 3. Program the PLC as per the requirement of the automation problem and interface the PLC with real-time system for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 5. Course Contents 6. Course Contents 6. Hour course contents 7. Interface the software tool with real-time system using I/O interface for automation. 8. Interface the software tool with real-time system using I/O interface for automation. 9. Automation, basic elements of automated systems- power, program and control, low-cost automation, advanced automation functions, levels of automation, industrial control low-cost automation, advanced automation functions, levels of automation, industrial control systems in process and discrete manufacturing industries, continuous and discrete control, low-cost automation, advanced automation, Product design for automated assembly, Quantitative analysis of assembly system. 8. Pneumatics and Hydraulics (Overview) 9. A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) 9. B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) 1. Intit 4. Programmable Logic Controllers (PLC) 1. Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays	1.	Apply	knowledge of automat	ion tools and other equipments for manufacturing and assembly component	ents.
assembly lines, etc. 3. Program the PLC as per the requirement of the automation problem and interface the PLC with real-time system for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 4. Interface the software tool with real-time system using I/O interface for automation. 5. Course Contents 6. Course Contents 6. Hour course contents 7. Interface the software tool with real-time system using I/O interface for automation. 8. Interface the software tool with real-time system using I/O interface for automation. 9. Automation, basic elements of automated systems- power, program and control, low-cost automation, advanced automation functions, levels of automation, industrial control low-cost automation, advanced automation functions, levels of automation, industrial control systems in process and discrete manufacturing industries, continuous and discrete control, low-cost automation, advanced automation, Product design for automated assembly, Quantitative analysis of assembly system. 8. Pneumatics and Hydraulics (Overview) 9. A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) 9. B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) 1. Intit 4. Programmable Logic Controllers (PLC) 1. Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays	2.				
Program the PLC as per the requirement of the automation problem and interface the PLC with real-time system (or automation.)					
Interface the software tool with real-time system using I/O interface for automation.	3.		<u> </u>	equirement of the automation problem and interface the PLC with real-t	ime systen
Interface the software tool with real-time system using I/O interface for automation. Course Contents				equitement of the automation problem and interface the 126 with real t	iiie systeii
Unit 1 Introduction Automated manufacturing systems, fixed /programmable/ flexible, automation, need of automation, basic elements of automated systems- power, program and control, low-cost automation, advanced automation functions, levels of automation, industrial control systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. Unit 2 Assembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. Unit 3 Pneumatics and Hydraulics (Overview) A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC) in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as sorting automatic vending mac	4			th real-time system using I/O interface for automation	
Unit 1 Introduction Automated manufacturing systems, fixed /programmable/ flexible, automation, need of automation, basic elements of automated systems- power, program and control, low-cost automation, advanced automation functions, levels of automation, industrial control systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. Unit 2 Assembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. Unit 3 Pneumatics and Hydraulics (Overview) A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always OR Foctacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine	7.	michia	lee the software tool wi		Цон
Automated manufacturing systems, fixed /programmable/ flexible, automation, need of automation, basic elements of automated systems- power, program and control, low-cost automation, advanced automation functions, levels of automation, industrial control systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. Unit 2	T T	<u>.</u> 1	T4 J4	Course Contents	nour
automation, basic elements of automated systems- power, program and control, low-cost automation, advanced automation functions, levels of automation, industrial control systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. Unit 2	Un	11 1		final language 11 / 61 111	
automation, advanced automation functions, levels of automation, industrial control systems in process and discrete manufacturing industries, continuous and discrete control; computer process control. Unit 2					
unit 3 Unit 3 Pneumatics and Hydraulics (Overview) A. Pneumatics and Hydraulics (Overview) A. Pneumatics and Hydraulics (Overview) A. Pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors-types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the pneumatic (PLC) Introduction to Programmable Logic Controllers (P					
Unit 2 Assembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. Unit 3 Pneumatics and Hydraulics (Overview) A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic proper			i i	· · · · · · · · · · · · · · · · · · ·	ın 💮
Unit 2 Assembly Automation Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. Unit 3 Pneumatics and Hydraulics (Overview)			-	manufacturing industries, continuous and discrete control; comput	er
Types and configurations, Parts delivery at workstations, Various vibratory and non-vibratory devices for feeding and orientation, Product design for automated assembly, Quantitative analysis of assembly system. Unit 3 Pneumatics and Hydraulics (Overview) A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control			process control.		
Unit 3 Pneumatics and Hydraulics (Overview) A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process	Un	it 2	Assembly Automatic	on	
Unit 3 Pneumatics and Hydraulics (Overview) A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation advantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder flagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power tran					
Unit 3 Pneumatics and Hydraulics (Overview) A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors-Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors-Types, grippers, Various process tool			devices for feeding	and orientation, Product design for automated assembly, Quantitati	ve 00
A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors in			analysis of assembly	system.	
A. Pneumatic: Components, constructional details, filter, lubricator, regulator, constructional features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors in	Un	it 3	Pneumatics and Hyo	draulics (Overview)	
features, types of cylinders, control valves for direction, pressure and flow, applications of pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors inter					al
pneumatics in automation (explaining the pneumatic circuits) B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					
B. Hydraulics: Pumps and motors- types, characteristics, cylinders, types, typical construction details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					
details, valves for control of direction, flow and pressure, applications of hydraulics in automation (explaining the hydraulic circuits) Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,			-		
Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages over relays, use of PLC in automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					
Unit 4 Programmable Logic Controllers (PLC) Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,				* **	111
Introduction to Programmable Logic Controllers (PLC), PLC system and components of PLC, input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,	**	• 4 4			
input output module, PLC advantages and disadvantages over relays, use of PLC in automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,	Un	1t 4			~
automation, advantages and disadvantages of programmable automation basic components and symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					
symbols, PLC programming methods, fundamentals of ladder diagram, internal relays, holding contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					
Contacts, always ON always OFF contacts, nesting of ladders PLC input instructions, outputs, coils, indicators, operational procedures, contact and coil input output Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,			_		
Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					
Unit 5 Automation using PLC PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,			I -	· · · · · · · · · · · · · · · · · · ·	ts,
PLC sequential function and its applications such as water level control, material handling device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					
device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,	Un	it 5	Automation using P	LC	
device, stamping device, elevator, etc., PLC timers and industrial applications such as sorting conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,			PLC sequential func	tion and its applications such as water level control, material handli	ng
conveyor, bottling plant, etc., PLC counters and its industrial applications such as packaging, automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					າຕ
automatic vending machine, etc., Use of automation studio software and interface box (input/output interface) in industrial automation Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					
Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					_
Unit 6 Fundamentals of Industrial Robots and Robotic End Effectors and Sensors Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,			_		
Specifications and Characteristics, Criteria for selection, Robotic Control Systems: Drives, Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,	IIn	it 6			
Robot Motions, Actuators, Power transmission systems, Robot controllers, Dynamic properties of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,	OII	it U			, c
of robots-stability, Control resolution, Spatial resolution, Accuracy, Repeatability, Compliance, Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,			•	· · · · · · · · · · · · · · · · · · ·	
Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,				· · · · · · · · · · · · · · · · · · ·	
Work cell control, Interlocks. Transducers and sensors- Sensors in robotics and their classification, Touch (Tactile) sensors, Proximity and range sensors, Force and torque sensing, End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,			_		l lix
End Effectors- Types, grippers, Various process tools as end effectors; Robot End effectors interface, Active and passive compliance, Gripper selection and design, Transformation,					eir
interface, Active and passive compliance, Gripper selection and design, Transformation,					
			• 1		
Relative transformation, Direct and inverse kinematics solutions.					n,
			Relative transformati	on, Direct and inverse kinematics solutions.	

1.	Automation, Production Systems and Computer Integrated Manufacturing M. P. Groover, Pearson
	Education.5th edition, 2009.
2.	Introduction to Robotics- John J. Craig, Addison Wesley Publishing, 3rd edition, 2010
Reference Book	S
1.	"Robot Technology Fundamentals", Keramas, James G, Thomson Learning -Delmar ISBN: 981-
	240-621-2,(1998).
2.	Robotics for Engineers - YoramKoren, McGraw Hill International, 1st edition, 1985
3.	"Introduction to Robotics, Analysis, Control and Applications", Niku, Saeed B., Willey Publication,
	ISBN 9788126533121, 2nd Edition.
Useful Links	
1.	https://www.electricaltechnology.org/2015/09/what-is-industrial-automation.html
2.	http://nptel.ac.in/courses/108105062/
3.	http://nptel.ac.in/courses/112102011/

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	2	1	1	-	-	-	-	-	-	2	2	2	2
CO 2	2	2	2	1	1		-	ı	ı	-	1	2	2	2	2
CO3	3	3	3	1	1	1	-	1	1	1	1	2	2	2	2
CO 4	3	3	3	1	1	1	-	-	-	-	-	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	1	1	1	05
Understand	3	3	2	10
Apply	4	4	2	10
Analyse	3	3	2	15
Evaluate	3	3	2	15
Create	-	-	1	05
TOTAL	15	15	10	60

			Go	overnment Colleg	e of Engineering, Kar	ad		
					V) B. Tech. Mechanic			
					igeration and Air Con			
			1111 2000	· Elective I Reil				
Teach	ning Sch	eme		I		Examination Sch	ieme	
Lectu			03 Hrs/week			CT – 1	15	
Tutor	ials					CT – 2	15	
Total	Credits		03			TA	10	
						ESE	60	
						Duration of ESE	02 Hrs 3	0 Min
	se Outco			11 .				
	1		students will be	•				
1. 2.	1			efrigeration systems		and ampaganias		
3.				applications of ferri	geration, air conditioning	and cryogenics		
<u> </u>				systems for thermal				
••	Tillary	y v ui i o	<u>us renrigeration</u>		urse Contents			Hours
Ur	nit 1	Recar	oitulation of Fu		<u> </u>			110011
					eration, Commercial unit	, Energy Efficienc	y Ratios	
), BEE star ratin			· ·		
				e, Limitations of Ca	rnot cycle			
				pression System			1	
					ression refrigeration sys			
					us wet compression, T ation on P-h, T-s diag			
					onship, Reversed Brayton			(6)
					arious Air standard ref			
				ins (descriptive trea		8		
Ur	nit 2		Pressure Syste		,			
					f evaporator pressure, ef			
					t of liquid sub cooling (n			(6)
					and multiple expansion			
			•	flash gas, Need for	multi pressure system a	nd cascade system,	Dry-1ce	
IIv	nit 3		eration system	efrigeration Syster	n			
UI	nt 3		ur Absorption S		11			
		_	-	•	ies of refrigerant-absorb	ent pair. Ammon	ia-Water	
					on system and functioning			
			ı Jet Refrigerat			-		
					alculations, Use and limita	ations		
			etic Refrigerati	•				(8)
			-	, scope and limitation	ons			
			gerants fication & ASE	IRAE nomenolaturo	of refrigerants, Desirable	e properties of refe	igerante	
					efrigerants, Effect on O			
					nmental protection protoc			
Ur	nit 4		rometry		. 1 "		-	
			-	itioning, Psychomet	ric properties of moist air	, Use of psychometr	ric tables	
				ADP, Sensible heat	factor, Bypass factor, Air	r washer and its app	lications	(6)
			an Comfort		1	cc .: c	Ecc :	
			-		and environment, Factors	attecting comfort,	Effective	
T 1	nit 5			hart, Ventilation red				
UI	11t 3			d Applied Psychon	ifferent heat sources, Ac	diabatic mixing of	two air	
					HF, ERSHF, Room appar			(0)
				and outside design		and don point, ve		(8)
					om/Split and packaged a	air conditioners, Ce	entral air	
		condit	tioning systems					
Ur	nit 6			igeration & Air Co				
		Cold	storage plant, E	nergy conservations	and green buildings, Fre	eeze drying, Pharm	aceutical	

a	nd hospital air conditioning, Textile and car air conditioning (plant layout, system								
C	omponents and design considerations)								
	Cryogenics								
	Definition, Methods of producing cryogenic temperature, Liquefaction of gases- N ₂ , H ₂ , He, (6)								
	inde Cycle, Application of Cryogenics: Medical applications, Space applications, production								
	ngineering applications, Superconductivity, Magnetic levitation								
<u>.</u>									
Text Books									
1.	C. P. Arora, "Refrigeration & Air-Conditioning", Tata McGraw Hill, 3 rd Edition, 2010								
2.	Jordan & Priester, "Refrigeration & Air Conditioning", Prentice-Hall India, 2 nd edition, 1973								
3.	Manohar Prasad, "Refrigeration & Air-Conditioning", New Age Intl. Publications, 3 rd 2010								
Reference Book	s								
1.	ASHRAE Handbook, Fundamentals, 2013								
2.	Carrier Handbook of Air Conditioning System Design, 2017								
3.	Roy J. Dossat, "Principles of Refrigeration", Wiley Eastern Limited, New Delhi								
4.	W. P. Jones, "Air Conditioning Engineering", Elsevier,5 th Edition								
5.	P. N. Ananthanarayan "Basic Refrigeration and Air Conditioning", Tata McGraw Hill Publishing								
	Company Ltd., New Delhi, 3 rd Edition, (1981)								
6.	W. P. Jones, "Air Conditioning Applications and Design", Elsevier, 2 nd Edition								
Useful Links									
1.	http://nptel.ac.in/courses/112105128/								
2.	http://nptel.ac.in/downloads/112105129/								
3.	http://nptel.ac.in/courses/112107208/								
4.	https://www.beestarlabel.com/								
5.	http://www.emersonclimate.com/europe/ProductDocuments/CopelandLiterature/SGE127-Emerson-								
	General-Product-Catalogue-2017-EN_1.pdf								
6.	http://www.emersonclimate.com/en-US/Brands/Vilter/Pages/brochure.aspx								

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	2	2	1	1	ı	ı	ı	ı	-	1	2	2	2	2
CO 2	2	2	2	1	1		1	-	-	-	1	2	2	2	2
CO 3	3	3	3	1	1	1	-	1	1	1	1	2	2	2	2
CO 4	3	3	3	1	1	1	-	-	-	-	-	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	1	1	1	05
Understand	3	3	2	10
Apply	4	4	2	10
Analyse	3	3	2	15
Evaluate	3	3	2	15
Create	-	-	1	05
TOTAL	15	15	10	60

		Government College o	f Engineeri	ng. Kara	1	
		Year (Sem – V) B. Te				
	IIII	ME2506: Operation			icering	
		WILLEOUS Operation	TIS IXOSCUI C.			
Teaching Schem	ne				Examination	on Scheme
Practical	02 Hrs/week				CA	50
Tutorials	-				ESE	-
Total Credits	01					
		f course, students will be	able to,			
	course the studen					
	d quantitative tech	nniques in management d	lecision-maki	ng and its	applications l	by using mathematical
models 2. Analyse L	DD Assignment or	ad Tuanan autation muchlar	<u> </u>			
		nd Transportation probler ecision theory problem	11			
	twork by CPM / Pl					
4. Design ne	twork by CINI/II	Eret teeminque				
Lab Content						
	d consist of any 8	experiments from the fol	lowing.			
		···•				
Assignment 1	Formulation of l	LPP and Graphical Soluti	on.			
		•				
Assignment2	Assignment on 1	Maximization / Minimiza	tion of L. P.	problems		
Assignment3	Assignment on 7	Transportation problems				
		A				
Assignment4	Assignment on A	Assignment problems				
Assignment5	Assignment on	Sequencing problems				
Assignments	Assignment on a	sequencing problems				
Assignment6	Assignment on l	Decision theory				
11001911110110	T 1991B					
Assignment7	Assignment on 0	CPM/PERT problems				
		•				
Assignment8	Assignment on s	shortest path models				
				1	T	
Text Books						
		ankara Iyer (TMH- Sigm				
2. Operation	ns Research- Hira	Gupta-(S Chand) Reprin	t Edition 201	5		
		Sharma. (Mac Millan)20				
4. Operation 2006)	ns Research – Prin	nciples & Practice - Ravi	ndran, Phillip	s & Solber	g (John Wily	& Sons, Wiley India,
5. Introduct		s Research-Theory &	Applications,	- H.S. K	asana & K.	D. Kumar, (Springer
Reference Book	onal Edition, 2005,	, springer maia)				
		vith CD) – Hamdy A. Tah	na (PHI) 201	<u> </u>		
		Management, 4/e - N.D.				
		vith CD) – Hillier & Lieb				
		R. Panneerselvam (PHI)		· · · ·		
		arajan, A.M.; Balasubram		nilrasi, A.	(Pearson Ed	lucation)2005
•		ications & Algorithms, 4			(CENGAGE	Learning 2003)
Useful Links						
1. NPTEL						
		2018/12/mechanical-mea	surements-an	d-metrolog	y.html	
	Metrology:	,			,	
https://co	smolearning.org/c	ourses/mechanical-measi	<u>arements-and</u>	-metrology	<u>/</u>	

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
LO↓													1	2	3
LO 1	3	3	2	2									1		
LO 2	3	3	2	3						2	2			3	2
LO3	3	3	2		1	2									
LO 4	2	3	3	3	1	2	1	2	2	3		2	2	3	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	4	6
Understand	ı	-	4	8
Apply	ı	-	5	6
Analyse	ı	-	6	3
Evaluate	-	-	6	2
Create	ı	-	0	0
TOTAL	-	-	25	25

Government College of Engineering, Karad Third Year (Sem – V) B. Tech. Mechanical Engineering ME 2507: Metrology and Quality Control LAB **Teaching Scheme Examination Scheme** Practical 02 Hrs/week CA Tutorials **ESE** 25* **Total Credits** 01 *ESE based on performance in practical oral examination Lab Outcomes (LO) At the end of course, students will be able to, Select and use an appropriate linear, angular measuring instrument and comparator for inspection. Perform an inspection on CMM for dimensional and geometrical features. 2. Measure surface roughness, screw thread parameter and gear tooth parameter using appropriate instrument. **3.** Plot normal distribution curve and control charts for a given manufacturing process. 4. **Lab** Content Term work should consist of any 8 experiments from the following, **Experiment 1** Perform linear measurement using various linear measuring instruments. **Experiment 2** Perform angle measurement using various angle measuring instruments. **Experiment 3** Use of comparators in industry with the help of pneumatic and electro-pneumatic comparator **Experiment 4** Use of optical profile projector for Screw thread measurement and gear tooth profile inspection. **Experiment 5** Flatness measurement of a surface with the help of an optical flat. Use of CNC-CMM and inspection fixtures to inspect dimensions and geometrical parameters of a **Experiment 6** given drawing. Measurement of surface roughness with surface tester and measurement of gear tooth thickness with **Experiment 7** gear tooth Vernier Caliper. Screw thread measurement (major, minor and effective diameter) with the help of floating carriage **Experiment 8 Experiment 9** Construct a normal distribution curve by actual measurement. **Experiment** Industrial Visit for studying different comparators, various measuring instruments. 10 A group of 5 students can select any one group activity given below: • Students should collect drawing Group **Activity** of a component from industry and suggest a measuring instrument / method to measure various dimension and geometric parameters in it. **Text Books** "Engineering Metrology", I. C. Gupta, Dhanpat Rai Publications, 7th Edition 1. 2. "Engineering Metrology", R. K. Jain, Khanna Publications, 17th Edition "Statistical Methods", S. P. Gupta, Danpat Rai and Sons, New Delhi, 2007 **Reference Books** "Engineering Metrology and Measurements", N. V. Raghavendra and L. Krishnamurthy, Oxford publication, 1. 2013 Edition "Practical Engineering Metrology", Sharp K.W.B., Pitman, London, 1966 2. **3.** "Statistical Quality Control", A. L. Grant, Tata McGraw Hill International, New York. 6th Edition "Statistical Quality Control", R. C. Gupta, 9th Edition 4. "Engineering Metrology", Hume K. G., M. C. Donald, Technical and Scientific, London, 2nd Edition. 5. "Quality Control and Industrial Statistics", Duncon A. J., Publisher- R. D. Irwin, 4th Edition 6. **Useful Links** 1. **NPTEL Lecture:** http://www.nptelvideos.in/2018/12/mechanical-measurements-and-metrology.html 2. Video of Metrology: https://cosmolearning.org/courses/mechanical-measurements-and-metrology/

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
LO 1	3	3	2	3											
LO 2	3	3	2	3						2	3			3	3
LO3	3	3	2		3	3									
LO 4	2	3	3	3	3	3	3	3	3	3		3	3	3	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	ı	-	4	6
Understand	-	-	4	8
Apply	1	-	5	6
Analyse	ı	-	6	3
Evaluate	ı	-	6	2
Create	-	-	0	0
TOTAL	-	-	25	25

			Government College of Engineering, Karad					
		7	Γ Y (Sem –V) B. Tech. Mechanical Engineering					
			ME 2508: Heat Transfer Lab					
Teaching	Scheme	e	Examination	Scheme				
Practical		02 Hrs/week	CA	25				
Total Cre	dits	01	ESE	25*				
			*ESE based on performance in practical oral exa	mination				
Course C	utcome	s (CO)						
1.	Execu	te: To understar	nd and execute experiments					
2.	Measu	re: To understa	nd measuring Equipment and apply					
3.			data from experiment and correlate to basic					
4.	Apply	: To apply lear	ning in evaluating heat exchanger performance					
No		Experiment N	Name	Hours				
Experin	ent 1		of thermal conductivity of Insulating powder.	2				
		Determination	of thermal conductivity of a Metal rod	2				
Experin	ent 3	Determination	of thermal resistance and temperature distribution in a Composite wall.	2				
Experin	ent 4	Determination	of thermal conductivity of insulating material in Lagged pipe.	2				
Experin	ent 5	Determination	of local and average heat transfer coefficient in Natural convection heat	2				
Experin	ent 6	Determination	of Heat Transfer Coefficient under forced convection to air from a hot pipe.	2				
Experin	ent 7	Determination	of emissivity of a Non-black surface.	2				
Experin	ent 8			2				
		Determination	of Critical Heat Flux	2				
		Determination	of heat transfer coefficient in dropwise and film wise condensation	2				
	xperiment 2Determination of thermal conductivity of a Metal rod2xperiment 3Determination of thermal resistance and temperature distribution in a Composite wall.2xperiment 4Determination of thermal conductivity of insulating material in Lagged pipe.2xperiment 5Determination of local and average heat transfer coefficient in Natural convection heat transfer from a vertical cylinder.2xperiment 6Determination of Heat Transfer Coefficient under forced convection to air from a hot pipe.2xperiment 7Determination of emissivity of a Non-black surface.2xperiment 8Determination of Stefan Boltzmann Constant.2xperiment 9Determination of Critical Heat Flux2							
Experim	ent 12			2				
		•	-					

Experiment 14

Experiment 15

Experiment 16

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
LO↓													1	2	3
LO 1	2	2	2	1	-	-	-	-	-	-	-	2	2	2	2
LO 2	2	2	2	1	1		-	-	-	-	1	2	2	2	2
LO3	3	3	3	1	1	1	-	1	1	1	1	2	2	2	2
LO 4	3	3	3	1	1	1	-	-	-	-	-	2	2	2	2

2

2

2

To prepare a program in C or C++ for 2 experimental results

To simulate 2D heat conduction problem of Laplace using excel

To use virtual lab for 2 experiments in the list

Experiment 17 To simulate 2D heat conduction problem of Laplace using ANSYS

Assessment Pattern (with revised Bloom's Taxonomy)

Experiment 13 Performance analysis of extended surfaces

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	4	6
Understand	-	-	4	8
Apply	-	-	5	6
Analyse	-	-	6	3
Evaluate	-	-	6	2
Create	-	-	0	0
TOTAL	-	-	25	25

		Government (College of Enginee	ring, Karad	
	Th	ird Year (Sem – ') B. Tech. Mecha	nical Engineering	
				ional Machining Lab	
Teaching Sc	neme			Examination S	cheme
Practicals	2 Hrs/v	veek		CT – 1	-
Tutorials	-			CT-2	-
Total Credits	01			CA	25
Course Outo		. 111			
		ent will be able to:			1 C N
	stand and compa onal machining p		on-traditional machi	ining process and recognize the	ne need for Non-
			ed of Chemical and e	electro-chemical machining pro	icess
				process parameters, proces	
		es and limitations EI		r r	,
4 Unde	stand the LBM	equipment, LBM p	rameters, and chara	acteristics. EBM equipment a	nd mechanism of
metal	removal.				
			Course Content		Hours
Experiment	l Demonstration	n of construction an	l working of plastic	molding machine	(02)
Experiment		f simple component	on plastic molding m	nachine.	(04)
Experiment	3 Demonstration	n of construction an	l working of EDM n	nachine	(02)
Experiment	4 Preparation o	f simple component	on EDM machine		(04)
Experiment	5 Demonstration	n of construction an	l working of 3D prin	nter	(02)
Experiment	6 Demonstration	n of construction an	l working of Ultraso	nic Label Cutting Machine.	(04)
Text Books					
				Graw Hill Education India Pvt.	
				ao Paulo Davim , Springer, Ne	w York, 2013.
		<u>U</u>		ng House, New Delhi, 2007.	
		Processes, Vijaya l	Lumar Jain, Allied Pu	ublishers Pvt. Ltd., New Delhi,	2005
Reference B		**************************************		2 7 1 2004	
			ill Education India I		
	anced Machining Professional, Nev		tional and Hybrid M	Machining Processes, Hassan El	-Hofy , McGraw-
Useful Links		,			
1. http	s://nptel.ac.in/cou				

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
LO↓													1	2	3
CO 1	2	2	2	1	-	-	-	-	-	-	-	2	2	2	2
CO 2	2	2	2	1	1		-	-	-	-	1	2	2	2	2
CO 3	3	3	3	1	1	1	-	1	1	1	1	2	2	2	2
CO 4	3	3	3	1	1	1	-	-	-	-	-	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	ı	-	4	
Understand	ı	-	6	
Apply	ı	-	6	
Analyse	-	-	4	
Evaluate	-	-	5	
Create	-	-	0	
TOTAL	-	-	25	

			Government College of	Engineeri	ng, Kara	<u> </u>		
			Year (Sem – V) B. Tech					
			529 Elective – I Lab: In					
		WIE 2	529 Elective – I Lab: III	uustriai A	<u>tutomano</u>	II Lab		
Topo	hing Caham	0				Examination	n Cahama	
	hing Schem							
Pract		02 Hrs/week				CA	25	
Tutor		-						
I otai	Credits	01						
			<u> </u>					
T 1	0 4 (1	· (1) 1	C . 1 . '11 1 1	1 4				
		•	f course, students will be al	ole to,				
1.		asic refrigeration s						
2.			efrigeration for selection of			onents and ac	cessories	
3.			Refrigeration and Air Cond			1 0 1		
4.			igeration related problems	s by apply	ing princi	ples of math	iematics, scie	ence and
	engineering	5						
		I ~						
		Lab Content						
		Term work shou	ald consist of any 10 experi	ments from	the follow	ing,		
Exp	eriment 1	Exercise on elec	etro pneumatics for sheet be	ending appli	ication			
Exp	eriment 2	Exercise on elec	ctro pneumatics for press- in	n and bondi	ng applicat	tion with time	delay	
Exp	eriment 3	Exercise on elec	etro hydraulics for press ma	chine with	two hand s	afety control		
Exp	eriment 4	Exercise on elec	etro hydraulics for material	handling ap	plication			
Exp	eriment 5	PLC Programmi	ing for water level control a	and its demo	onstration			
Exp	eriment 6	PLC Programmi	ing for elevator and its dem	onstration				
Exp	eriment 7	PLC Programmi	ing for sorting conveyor and	d its demon	stration			
Exp	eriment 8	PLC Programmi	ing for bottling plant with c	ounter and	its demons	tration		
Exp	eriment 9	Exercise on Aut	omation Studio software fo	r automatic	on of mater	ial handling a	pplication.	
	eriment 10	•	utomation Studio software	with pneun	natics using	g interface box	x (Input/outpu	ıt
E		interface)	entomotion Cturdin andtrum	مسام المسام	.1i.ai.a.a.	:	(To 2004/2004	
Expe	eriment 11	•	utomation Studio software	with nyara	uncs using	interface box	(Input/output	į.
		interface)						
Futo	miola					1		
Tuto	riais Books							+
1 ext		ion Draductica	Systems and Computer	Internetal	Monufact	luring" M	D Crosser	Doorge
1.			511-9, 2 nd Edition, 2004	miegraieu	Manuraci	uring , ivi.	r. Gloovel,	rearsor
2.			ontroller", John R. Hackwo	orth and Fr	ederick D.	Hackworth, l	Pearson Educ	ation, 4 ^t
	Edition, 2							
3.	"Introduc Edition, 2	•	es and Pneumatics", S. Ila	ngo and V	. Soundara	rajan, PHI L	earning Pvt.	Ltd., 2 ⁿ
Refe	rence Books							
1.			utomation", R. K. Rajput, S	Chand 4		1		
2.			s", Khushdeep Goyal, Dee		lari S K	Kataria and	Sons Publica	tions 1
4.	Edition, 2		s, ishushucep doyal, Dec	Pak Dilailu	m1, D. IX.	ixatarra anu	Sons i uonca	10115, I
3.			, Pearson Education , 5 th Ed	lition 2011				
4.			trollers", W. Bolton, Newn					
	ıl Links	madic Logic Com	doners, w. Donon, rewn	co, i Luiti	2000			
SCIL					1			1

http://nptel.ac.in/courses/108105062/

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
LO ↓													1	2	3
LO 1	3	3	2	3											
LO 2	3	3	2	3						2	3			3	3
LO 3	3	3	2		3	3									
LO 4	2	3	3	3	3	3	3	3	3	3		3	3	3	3

Knowledge Level	CT 1	CT 2	CA	ESE
Remember	ı	ı	4	ı
Understand	-	-	4	-
Apply	-	-	5	-
Analyse	-	-	6	-
Evaluate	-	-	6	-
Create	-	-	0	-
TOTAL	-	-	25	-

		Government College					
		Year (Sem – V) B. T					
	ME 2539 El	ective – I Lab: Refrig	geration and	Air Cond	ditioning Lab)	
Teaching Sch	eme				Examination	n Scheme	
Practical	02 Hrs/week				CA	25	
Tutorials	-				0.11		
Total Credits	01						
					'	'	
Lah Outcome	s (LO): At the end o	of course, students will b	e able to				
	y basic refrigeration		<u>e dore to,</u>				
		efrigeration for selection	n of various sy	stem comp	onents and acc	essories	
	-	Refrigeration and Air C	•		onems and acc		
		igeration related probl			inles of mathe	ematics scie	nce and
enginee	•	igeration related proof	cms by appr	ying princi	ipies of matrix	matics, sele	nice and
Cligiliec	ing						
	Lab Content						
		ald consist of any 10 exp	periments from	the follow	vina		
	Term work sho	and consist of any 10 cap	ocimients mon	i the follow	vilig,		
Experiment	1 Study or demor	stration of dehydration,	charging, leak	testing of	refrigeration sy	ystem.	
Experiment	•						
Experiment		onstration of controls and	d safety device	es in refrige	eration and air	conditioning.	
Experiment		on vapor compression sy					
Experiment		rant compressors					
Experiment							
Experiment		on cascade refrigeration	system.				
Experiment			-				
Experiment		onstration on air condition	oning systems.	(Unitary a	nd central air c	onditioning /	system
Experiment 1		nditioning Test Rig					
Experiment 1	Visit to central	air conditioning or cold	storage or dair	y plant.			
•		t related with refrigeration			ystem.		
Group activi		o 4 students in one grou					
•	Market survey	of one product related t	o refrigeration	and air co	nditioning syst	ems / load	
		pecific application, space	•		<i>C</i> ,		
	•						
Text Books							
1. C. P. A	Arora, "Refrigeration	& Air-Conditioning", 7	Tata McGraw 1	Hill, Third	Edition, 2004.		•
		of Refrigeration", Wiley					
3. Manol	nar Prasad, "Refriger	ation & Air-Conditionin	ıg", New Age	Intl. Public	cations, Third e	dition, 2010	
Reference Bo			<u>, 8-</u>		,	,	
1. ASHR	AE Handbook, Fund	lamentals, 2013.		•	•		•
		ration & Air Conditionii	ng", Prentice-I	Hall India,	Second edition	, 1973.	
	Standards"		-	· · · · · · · · · · · · · · · · · · ·			
Useful Links							
1.							

2.

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
LO↓													1	2	3
LO 1	3	3	2	3											
LO 2	3	3	2	3						2	3			3	3
LO3	3	3	2		3	3									
LO 4	2	3	3	3	3	3	3	3	3	3		3	3	3	3

Knowledge Level	CT 1	CT 2	CA	ESE
Remember	ı	-	4	ı
Understand	ı	-	4	ı
Apply	ı	-	5	ı
Analyse	-	-	6	-
Evaluate	1	-	6	ı
Create	ı	-	0	ı
TOTAL	-	-	25	-

			vernment College of Enginee			
		Third Yo	ear (Sem – V) B. Tech. Mecha		ering	
			ME2510Machine Design	-1 Lab		
Teach	ing Scheme				Examination	n Scheme
Practic		02 Hrs/week			CT – 1	
Tutoria		- 02 TH 5/ WCCR			$\frac{CT-1}{CT-2}$	-
	Credits	01			TA	25
Lab O	Outcomes (L	0)		1		1
At the		ourse, student will				
1.			and design procedure of machine			
2.			ailure theories of different machin			
3.			ected to static loading and fluctua			
4.	Analyse sel	ection of transmiss	ion elements subjected to static ar	nd variable load	ling	
T		1.1	Course Contents			
1 erm	work snou	ia consist of foll	owing experiments.			
Desig	n Projects	Design and prepa	re two Assemblies (Manual/ CAI	drawing) cove	ering entire s	vllahus
Desig	, ii i i ojecus		ct shall consist of two full imperi			
			d overall dimensions and drawing			
		Manufacturing to	lerances, surface finish symbols			
		important surface				
			riving all necessary calculations o	f the design of	components	and assembly should
		be submitted in a	separate file. shall be used wherever necessary	, for selection of	of standard co	mnonants
Assi	ignments	Design data book	shan be used wherever necessary	7 TOT SCIECTION C	n standard co	imponents.
11551	1:	Selection of mate	rials and manufacturing methods	for machine ele	ements design	ned in any one of the
	-	above design pro	jects.			•
	2:	2D, 3D Stress Te	nsors, Strain Tensors			
	3:	Theories of failur	es and their applications.			
	4:	Use of dimension	nal tolerances, geometrical toler	rances and sur	face finish s	symbols in machine
		component draw	C			
	5:		ected to fluctuating loads			
	6:		ased on fasteners and welded join			
		_	hall be internally presented in the	form of power	point presen	tation, by a group of
		two/ three studen		actata activity of the	S 1	
			nment (Max 8 to 10 pages) along v	•	ppt is to be s	submitted.
		Each student sha	l complete any four of the above	assignments.		
Text E		0.5.4.			1 · · ·	
1.			s", V. B. Bhandari., Tata McGray			n
2.			t", J. F. Shigley, Tata McGraw H			rd T. 4:4: - :-
3. 4.			ed Approach", R. L Norton, Pears			
	ence Books	ion to iviacnine des	sign", V. B. Bhandari, Tata McGr	aw mili Publica	mon, Z Edit	1011
1.		Design" Hall Ho	owenko Laughlin, Tata McGraw	Hill Publication	n Schaum's C	Outline Series
2.			n", Robert C. Juvniall, Willey Ltd		i bellaulli s C	Admic Delles,
3.			s" M. F. Spotts, Pearson Education		5 th Edition	
			, , ,	-		
Useful	l Links					
1.	•	v.mit.edu/courses/i	nechanical-engineering/2-72-elen	nents-of-mecha	nical-design-	spring2009/lecture-
	notes/					
2.	http://npte	l.ac.in/courses/112	105124/			

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
LO↓													1	2	3
CO 1	2	2	2	1	-	-	1	1	ı	-	1	2	2	2	2
CO 2	2	2	2	1	1		1	-	ı	1	1	2	2	2	2
CO 3	3	3	3	1	1	1	-	1	1	1	1	2	2	2	2
CO 4	3	3	3	1	1	1	-	-	-	-	-	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	4	
Understand	-	-	6	
Apply	-	-	6	
Analyse	-	-	4	
Evaluate	-	-	5	
Create	-	-	0	
TOTAL	-	-	25	

Government College of Engineering, Karad Third Year (Sem – V) B. Tech. Mechanical Engineering

ME2511: Mini Project

Teaching Schem	e	Examination	on Scheme
Practicals	02 Hrs/week	CT – 1	-
Tutorials	-	CT – 2	-
Total Credits	01	TA	25
		ESE	25

Course Outcomes (CO)

At the end of this course, student will be able to:

- 1. To understand team work to realize an engineering task.
- 2. To analyse the steps involved for the selection, execution and reporting of the project.
- **3.** To apply engineering knowledge to real life problem solving.
 - To evaluate community needs and covert idea in to product

Course Contents

The main aim of this course is to demonstrate the important attributes like critical thinking, creativity, collaborative efforts and communication skills in students. The aim is also to make students aware with the process involved in making product from idea. Not more than five students may carry out the minor project together. One supervisor from the department shall be assigned three project batches of the mini project.

The steps involved for completion of mini project includes, but not limited to:

1	Conceptualization of innovative idea through literature and market survey; sight visits; interaction with
	community or industry, socio-economic survey, etc.
2	Design of product, processes, methods and systems using multidisciplinary knowledge.
3	Fabrication of product, development of software, measurement methods, etc
4	Deployment, implementation and demonstration of project.
5	Presentation of project.

Guidelines for Project Selection:

Project work shall be based on any of the following:

- Design of any equipment /test setup/product
- Design and manufacturing of drilling jig for a component
- Design and manufacturing of milling fixture for component
- Design and manufacturing of press tool for component and trials for the same. (1.5 mm M.S. sheet)
- Prototype modelling for 3-4 parts assembly. (Design CAD model for a component / assembly and make it with the help of 3-D printer)
- Design a model and preparing the cam programming and making of the part with the help of VMC.
- Making the model of any heat power engineering system
- Any electromechanical /hydraulic/pneumatic circuit design with PLC for particular application
- Design and manufacturing pneumatic pick and place unit
- Design a pattern and make it with 3D printer and pour a casting with the help of AUTO CAST
- Auto pouring ladle for aluminium foundry
- Semi-automatic gravity die casting machine
- Analysis for auto component with the help of ANSYS software
- Energy audit for an industry/hospital/institute (up to 10 kW) 2. Hardware/numerical or theoretical analysis/review of survey

2. Hardware/numerical or theoretical analysis/review of survey study/research and development work

- The subject content of the minor project shall be from emerging/thrust areas, topic of current relevance
- The completion of work, the submission of the report and assessment should be done at the end of semester.

Project Report Format:

Project report should be of 15 to 20 pages (typed on A4 size sheets). For standardization of the project reports the following format should be strictly followed.

Page Size: Trimmed A4
 Top Margin: 1.00 Inch
 Bottom Margin: 1.32 Inches
 Left Margin: 1.5 Inches
 Right Margin: 1.0 Inch

6. Para Text: Times New Roman 12 Point Font

7. Line Spacing: 1.5 Lines

8. Page Numbers: Right Aligned at Footer, Font 12 Point, Times New Roman

9. Headings: Times New Roman, 14 Point Bold Face

- 10. Certificate: All students should attach standard format of Certificate as described by the department. Certificate should be awarded to batch and not to individual student. Certificate should have signatures of Guide, Head of Department and Principal/ Director.
- 11. Index of Report:
- a. Title Sheet
- b. Certificate
- c. Acknowledgement
- d. Table of Contents
- e. List of Figures
- f. List of Tables

12. References: References should have the following format For Books: "Title of Book", Authors, Publisher, Edition

For Papers: "Title of Paper", Authors, Journal/Conference Details, Year

List of Submission

- 1. Working model of the project
- 2. Project Report
- 3. Presentation and demonstration of project in exhibition

Mapping of COs and POs

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	1	1	1	1	ı	ı	ı	ı	ı	-	1	1	2	2	2
CO 2	3	2	2	1	2	1	1	1	-	-	1	2	2	2	2
CO 3	2	3	2	1	2	-	-	-	1	-	1	2	2	2	2
CO 4	1	2	2	1	2	1	-	-	-	-	-	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	1	1
Understand	-	-	5	5
Apply	-	-	5	5
Analyse	-	-	5	5
Evaluate	-	-	5	5
Create	-	-	4	3
TOTAL	-	-	25	25

				Community College of Engineering World						
			Th	Government College of Engineering, Karad						
			1n	nird Year (Sem –V) B. Tech. Mechanical Engineering						
				ME2512: Industrial Training						
То	achin	g Schei	200	Evo	mination Saha	mo				
	ctures		-			ine				
	torials		01 Hr/week	CA						
	tal Cro		01 1117 week							
10	tur Cr	cares	01							
Co	urse (Outcon	nes (CO)		<u>. </u>					
1.	To n	nake the	e students awar	re or familiar with the industrial work						
2. 3.	Com	nprehen	d the knowleds	ge gained in the course work						
3.	Crea	ite, sele	ct, learn and ap	pply appropriate techniques, resources, and modern engineering too	ols.					
			_	Course Contents		Hours				
		Execu	ition scheme							
		Indust	rial training of	f minimum two (2) weeks should be done after S. Y. B. Tech. (sem	ester IV)					
		in sun	nmer vacation	and its assessment will be done in T.Y. (semester V) based on repo	rt submitted					
		work	load of the asse	essment can be assigned to the project seminar guide.						
		Indus	trial Training							
					the course work that techniques, resources, and modern engineering tools. Course Contents O (2) weeks should be done after S. Y. B. Tech. (semester IV) ment will be done in T.Y. (semester V) based on report submitted e assigned to the project seminar guide. Industrial training of minimum two weeks in an industry preferably ring during the semester break after fourth semester and complete e start of fifth semester. The students have to submit a report of the e contents of the report before the evaluation committee constituted for artment. An internal evaluation he quality and authenticity of contents of the report and award the It is expected that students should undertake small assignment or related aspect. Report is based on compilation of work carried out mining, Industrial engineering- time study and motion study, Line evenent, Process capability evaluation, Industrial automation, an as identified. In a sidentified. In a sidentified when the student should be able to answer following questions and for this training? In and graphs in industry? What was its meaning for you? In a sidentified when the student should be able to answer following questions and for this training? If not what knowledge you feel In a sidentification of the report and award the starting of the report of					
		Industrial Training The students have to undergo an industrial training of minimum two weeks in an industry preferably dealing with Mechanical Engineering during the semester break after fourth semester and complete within 15 calendar days before the start of fifth semester. The students have to submit a report of the training undergone and present the contents of the report before the evaluation committee constituted								
				•						
		by	the							
				y modification as identified.	i automation,					
					ing questions					
				ou found useful for this training?	ing questions					
				<u>c</u>	011?					
		inadeo	•	-y system of First of a state and a summary of a state when the same and a graph of						
				involved knowledge of electrical, electronics, civil, chemical or any	y process					
			eering industry							
		_		cross any technical difficulty in training? If yes write in short, How	you solved?					
			•	for training? Have you followed it? Were people in industry sincered	•					
		work?		· · · · · · · · · · · · · · · · · · ·						
		7. Wh	ich language u	sed for communication in industry you visited? Have you talked th	iere?					
		8. Wh	at pollution me	easures were taken by the industry for their waste disposal?						
		9. Wh	at is most impo	ortant part of training you remember?						
		10. W	hat is current i	ssue in technical field you find most challenging?						
				s training is useful? What is its use?						
				be for research you find while undergoing this training?						

Tutorials:- Industrial Training Report Format:

Maximum five students in one batch, shall work under one Faculty. However, each student should have different industrial training and its presentation.

The report should be of 20 to 40 pages.

For standardization of the report the following format should be strictly followed.

1. Page Size: A4

2. Top Margin: 1.00 Inch3. Bottom Margin: 1.32 Inches4. Left Margin: 1.5 Inches

5. Right Margin: 1.0 Inch

6. Para Text: Times New Roman Font 12

7. Line Spacing: 1.5 Lines

- 8. Page Numbers: Right Aligned at Footer. Font 12, Times New Roman
- 9. Headings: Times New Roman, Font14, Bold Face
- 10. Certificate: All students should attach standard format of Certificate as described by the department. Certificate should be awarded to individual student. Certificate should have signatures of Guide, Head of Department and Principal/Director.
- 11. The entire report should be documented as one chapter with details like,
- a. "Name of Industry with address along with completed training certificate"
- b. Area in which Industrial training is completed.

All Students have to present their reports individually.

Course Objectives: - 1. To make the students aware or familiar with the industrial work

Reference Books

1. Design Data Handbook for Mechanical Engineers in SI and Metric Units by K. Reddy, K. Balaveera, Mahadevan, CBS Publishers

Mapping of COs and POs

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	1	1	1	1	ı	-	ı	-	ı	-	1	-	2	2	2
CO 2	3	2	2	1	2	-	-	-	-	-	1	2	2	2	2
CO 3	2	3	2	1	2	-	-	-	1	-	1	2	2	2	2
CO 4	1	2	2	1	2	1	-	-	1	-	-	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	ı	-	1	ı
Understand	-	-	5	-
Apply	-	-	5	-
Analyse	-	-	5	-
Evaluate	-	-	5	-
Create	-	-	4	-
TOTAL	-	-	25	-

Government College of Engineering, Karad Third Year (Sem – VI) B. Tech. Mechanical Engineering

ME 2601: Control Engineering

Teaching Sche	eme	Examination Scheme		
Lectures	03 Hrs/week	CT – 1	15	
Tutorials	-	CT – 2	15	
Total Credits	03	TA	10	
		ESE	60	
		Duration of ESE	02 Hrs 30 Min	

Course Outcomes (CO)

At the end of this course, student will be able to:

- 1. Identify application-wise components of feedback control systems.
- **2.** Apply mathematical models of physical systems and state-space approach in the analysis and design of control systems.
- 3. Develop block diagram representation for Mechanical, Electrical, Thermal, Liquid Level, Hydraulic, Pneumatic, Gear Train systems, etc.
- **4.** Analyse the time and frequency-domain responses of first and second-order systems to step, ramp, parabolic, sinusoidal and impulse inputs.

	Course Contents	Hours
Unit 1	Basics of Control Systems:	(06)
	Background, Definitions, Classification of Control Systems- Natural, Manmade, Combinational,	
	Time Varying and Time-Invariant, Linear and Nonlinear, Lumped Parameter and Distributed	
	Parameter, SISO and MIMO systems, Open Loop and Closed Loop Systems, Real time applications	
	of Open loop and closed loop systems, Comparisons, Position Control System- Servomechanisms,	
	Regulating Systems- Regulators , Generalized Control System, Requirements of an Ideal Control	
	Systems, Linearization of Non Linear Functions, Linearization of Operating Curves.	
Unit 2	Mathematical Model of Control System: Concept of transfer function, Mechanical Translational/	(08)
	Rotational Systems, Electrical Systems, Equivalent Mechanical System -Node Basis, Grounded	
	Chair Representation, Analogous Systems- FV and FI analogy, Thermal System,	
	Hydraulic/Pneumatic System, Mechanical levers, Gear Train, Belt/rope drives.	(00)
Unit 3	Block Diagram Representation of Control System Components:	(08)
	Block diagrams, Block Diagram Algebra, Rules for Reduction of Block Diagrams, Block diagram	
	development from system equations, Block diagram development of system components-	
	Thermometer, Water heating system, Liquid Level Systems, Hydraulic actuator, pneumatic	
	actuator, Hydraulic servomotor, Jet-pipe amplifier, Pneumatic amplifier, potentiometers, DC and AC Servomotors.	
Unit 4		(07)
Unit 4	Time Domain Analysis: Stondard Test signals, Ston Born, Bornholia Impulsa Evropential Sinuscidal Concent of Polas	(07)
	Standard Test signals- Step, Ramp, Parabolic, Impulse, Exponential, Sinusoidal, Concept of Poles and Zeros, Distinct, Repeated and Complex Poles. Response of First and Second Order Systems to	
	Inputs -Step, Ramp and Impulse, Damping Ratio and Natural Frequency, Transient Response	
	Specifications.	
Unit 5	State Space Analysis:	(06)
	System Representation in Time and Laplace Domain, Modelling of Electrical and Mechanical	(00)
	Systems, Construction of Simulation diagrams, Transfer function from state space model.	
Unit 6	Frequency Response Analysis:	(05)
	Frequency Domain approach, Magnitude Plots and Phase angle Plots, Bode plots, Gain Margin,	()
	Phase Margin, Polar Plots and Stability Determination.	1
		L

Tutorials- -- Assignments on each Unit- 6 Nos.

Text Books

- 1. "Control System Engineering", R Anand Natarajan, P. Ramesh Babu, SciTech Publication, 2nd Edition.
- 2. "Control Systems", A. Anand Kumar, Prentice Hall Publication.
- 3. "Modern Control Systems", K Ogata, Prentice Hall Publication, 3rd Edition.
- 4. "Automatic Control Engineering", D. Roy and Choudhari, Orient Longman Publication Calcutta.

Ref	Perence Books
1.	"Automatic Control Engineering", F.H. Raven Tata McGraw Hill Publication, 5th Edition.
2.	"Automatic Control Systems", B.C. Kuo, Willey India Ltd. / Prentice Hall Publication, 7th Edition.
3.	"Control System Analysis and Design", A. K. Tripathi, Dinesh Chandra, New Age International Publishers, 1st
	Edition.
4.	"Modern Control Systems", Richard C. Dorf, Robert H. Bishop, Prentice Hall, 2008
Use	ful Links
1.	www.ieeecss.org
2.	www.controlengineering.com
3.	www.journals.elsevier.com/control-engineering-practice

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO ↓													1	2	3
CO 1	3	2	1	1	1	-	-	-	-	-	-	2	2	2	3
CO 2	3	3	3	1	2	1	-	-	1	-	1	2	2	2	3
CO 3	3	2	3	-	2	-	-	-	1	-	-	2	2	2	3
CO 4	3	3	1	-	3	-	-	-	-	-	-	2	2	2	3

Assessment Pattern (with revised Bloom's Taxonomy)

www.learnerstv.com/Free-engineering-Video-lectures-ltv

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	4	2	05
Understand	5	4	2	15
Apply	5	3	2	10
Analyse	-	3	2	10
Evaluate	ı	1	2	15
Create	-	-	0	05
TOTAL	15	15	10	60

		Government College of Eng	gineering, Kar	ad		
	Thi	rd Year (Sem – VI) B. Tech. M				
		ME2602 Internal Combi		, ,		
Teachin	g Scheme	·		Examination Sch	eme	
Lectures	03 Hrs/week			CT – 1	15	
				CT – 2	15	
Total Cr	edits 02			TA	10	
				ESE	60	
				Duration of ESE	02 Hrs	30 Min
Course	Outcomes (CO)					
1 0. 1	1 1 1	1				
	•	and various types of internal com				
		ic thermodynamic cycles of I. C. e				
	.	nomenon in S. I. engine and C. I. rious engine systems and performa				
4. Impa	Course Contents	rious engine systems and performa	nce characteristi	cs		Hours
Unit 1		engine, classification and application	votione volvo ti	mina dinarama nor	t timina	(06)
Omt 1		mitting components, I. C. engine				(00)
		cles, assumptions, actual cycles-				
	losses	F				
Unit 2	Fuel Systems for S.I	. Engines: Engine fuel requireme	nts, carburettor,	derivation for calcul	ation of	(08)
		n of main dimensions of carbu				
	injection systems type	s of MPFI systems and their applie	cations, sensors,	ECU merits and den	nerits	
		mbustion in S. I. Engines: Stages				
		e and afterburning, factors affe				
		esign and operating variables on		rating, Octane numb	per, fuel	
1. 2		bustion chambers of S.I. engines				(0.0)
Unit 3		I. Engines: Requirements of inj				(08)
		nmon rail and distributor systems				
	diesel injection system	le, and pintaux, formation of spi	ay, atomization	and penetration. El	ectronic	
		m bustion in C.I. Engines : Stage	s of combustion i	in C. L. engine delay	neriod	
		period, abnormal combustion-			_	
		n diesel knock, comparison of ab		_	_	
		itives, requirements of combust			_	
	combustion chambers	, Visualisation of combustion by o	ptical instrumen	tation.		
Unit 4		g of Engines: Determination of				(06)
		ower, indicated power, friction p				
		e efficiency and mean effective	oressure. numeri	cal on Heat balanc	e sheet,	
	engine performance a	nd performance curves				
TT. *4 =	Daring D	I Carrianala C. I	IC CO NO '			(0.0
Unit 5		Control: S. I. engine emission (I				(06)
		(ELCD), catalytic converters, C. nethods- chemical, EGR, standard	-		-	
		s, dual-fuel engines, introducti				
	Superchargers, Turbo		on to moricum	ing and cooming i	systems.	
		0 ,				
Unit 6	Modern Trends in 1	. C. Engines: Advances in valve	and valve mech	nanism e.g. camless	engine,	(06)
		g (VVT), advances in S. I. engin		•	_	
	components such as s	ensors, ECU etc., merits and demo	erits, fuel supply	system for LPG/CN	NG fuels	
		ends in ignition system e.g. Digital				
		Rail Direct Injection System (CR	DI) components	such as sensors, E0	CU etc.,	
	merits and demerits					
			1	<u> </u>		
ı						
/D 4.75	1			<u> </u>		T
Text Bo				1	E 1'4'	2012
		nes", V. Ganesan, Tata McGraw-l				
2. "A	Course in Internal Con	bustion Engines", M. L. Mathur	ına K. P. Sharma	a, Dnanpat Kai Publ	ications I	vt. Ltd,

	First Edition, Re-print 2003											
3.	"Internal Combustion Engines", Rajput R. K., Laxmi Publications Pvt. Ltd, First Edition, Re-print 2014											
Ref	Perence Books											
1.	"Internal Combustion Engines and Air Pollution", R. Yadav, Central Publishing House, Allahabad, Second											
	Edition, 2004											
2.	"Internal Combustion Engine Fundamentals", John B. Heywood, Tata McGraw-Hill. Publishing Company Ltd,											
	First Edition, 2011											
3.	"Automotive Engines", Srinivasan, Tata McGraw-Hill Publishing Company Ltd., First Edition, 2001											
4.	"Internal Combustion Engines", Domkundwar and Domkundwar, Dhanpat Rai Publications Pvt. Ltd. First Edition,											
	2002											
Use	ful Links											
1.	http://www.iitg.ernet.in/scifac/qip/public_html/cd_cell/internal_combusn_engines.htm											
2.	http://vwts.ru/injector/k-jetronic/gasoline_fuel_injection_system_k-jetronic_eng.pdf 3.											
3.	www.yildiz.edu.tr/~sandalci/dersnotu/AKTraining.pdf											

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2						1								1
CO 2	2	2	2				1					1		2	2
CO 3	2	2	2				1					1	1	2	2
CO 4	2	2	2		1							1	1		

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	1	1	0	10
Understand	4	4	1	14
Apply	4	4	3	14
Analyse	3	3	3	12
Evaluate	2	2	2	08
Create	1	1	1	02
TOTAL	15	15	10	60

					<u> </u>	¥7. 1					
				Government College							
			Thi	rd Year (Sem – VI) B. To							
				ME 2613 Elective – II:	Additive Manu						
		g Schen				Examination S					
	tures		03 Hrs/week			CT – 1	15				
	orials					CT – 2	15				
Tota	al Cre	edits	03			TA	10				
						ESE	60				
						Duration of ES	SE 02 Hrs	30 Min			
Cou		Outcom									
1.				additive manufacturing and e		process sequence					
2.				equired for AM and its molec							
				ftware tools for additive mar							
4.	Deve	elop the	3D component	t using additive manufacturin				_			
				Course	Contents			Hours			
Un	it 1			itive Manufacturing (AM)				(06)			
		Genera	1 overview Int	roduction to reverse enginee	ring Traditional	manufacturing vis AM	Computer				
				and manufacturing (CAM)							
				process chain Application le							
				ifacturing; Indirect Processe							
			acturing	<i>5</i> ,		71 6	υ,				
Un	it 2		re Technolog	ies and Tools				(06)			
0 11				Processes: Data Sources, So	oftware Tools, I	File Formats, Model	Repair and	(00)			
				ost-processing, Designing for			ropun una				
Un	it 3		als science for		7 Idanti ve ividilar	actaring		(06)			
OII	It J				multiple mater	ials multifunctional a	and graded	(00)			
		Discussion on different materials used Use of multiple materials, multifunctional and graded materials in AM Role of solidification rate Evolution of non-equilibrium structure property									
				ucture and microstructure	2volution of no	ii-equinorium structur	e property				
TIm	it 4			ucture and inicrostructure				(08)			
Un	ու 4	AM technologies									
		Powder-based AM processes involving sintering and melting (selective laser sintering, shaping,									
		electron beam melting. involvement). Printing processes (droplet-based 3D Solid-based AM processes - extrusion based fused deposition modelling object Stereolithography Micro- and nano-									
		•		based fused deposition mod	delling object Ste	ereolithography Micro-	and nano-				
		additiv						(00)			
Un	it 5			anning, control for AM			_	(08)			
		Selection of AM technologies using decision methods Additive manufacturing process plan:									
				ocessing. Monitoring and con	ntrol of defects, to	ransformation		(06)			
Un	it 6	Applications of AM									
		Applications of AM: Aerospace, Automotive, Biomedical Applications of AM. Product									
		Develo	pment, Comm	ercialization, Trends and Fut	ure Directions in	Additive Manufacturin	ıg.				
Tex	t Bo	oks									
1.	Gib	son, R	osen, Stucker	, Additive Manufacturing	Technologies:	Rapid Prototyping	to Direct	Digital			
			ing. Springer, 2	-	\mathcal{E}	1 31 8		υ			
2.				standing additive manufactu	ring: rapid proto	typing, rapid tooling, r	apid manufa	cturing.			
_•			lishers, 2011.	summing additive managed	ing. impio proto	, p	прто пиштоти	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Ref		ce Book									
1.				ns, Rapid Manufacturing: Ar	Industrial Revol	ution for the Digital A	ne Wiley 20	005			
2.	-			acturing Technologies for Macturing Technologies			50. 11110y, 20	<i>500</i> .			
3.				and C.S. Lim, Rapid prot			3rd Edition	World			
J.			•	and C.S. Liii, Kapid prot	otyping: princip	ies and applications,	ora Eartion,	, world			
		entific, 2		Lion Manageria 1 11	a£ 4h a = 1.1°4°	- construction - (ANA)		414 a.v. 1-			
1	1 Z.h10			Liou, Numerical modeling	of the additive n	nanuracturing (AM) pi	ocesses of t	atanium			
4.		v. In Tec	h, 2012	*				*C***			
	allo			na Lacar accietad fabricatio	n of materials Si	oringer Series in Mater	ial Science (e-ISBN:			
4. 5	J.D.	. Majum	dar and I. Man	ilia, Lasci-assisted faoricatio	ii or materials, by	orniger beries in water	iai science,				
5	allo J.D. 978	. Majum -3-642-	dar and I. Man 28359-8.	ma, Laser-assisted faoricatio	ii or materials, o _l	orniger Series in Water					
5 Use	allo J.D. 978 eful L	. Majum -3-642- inks	28359-8.		ii oi materiais, sj	orniger beries in water					
5 Use 1.	J.D. 978 eful L http	. Majum -3-642- inks os://addit	28359-8. ivemanufactur	ing.com/basics/		Julia de la companya					
5 Use	J.D. 978 ful L http	Majum -3-642- inks os://addit	28359-8. ivemanufactur	ring.com/basics/ ive/additive-manufacturing		Jinger Series III Water					

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	2	3	3	3		2	1						2		3
CO 2	3	2	3		2	1		1						2	
CO 3	2	3	2	3	3	3		2	1				3		
CO 4	1		·	3	·	2	1		1				·		3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	3	2	2	10
Understand	3	3	2	15
Apply	2	3	2	10
Analyse	3	2	2	10
Evaluate	2	3	1	10
Create	2	1	1	5
TOTAL	15	15	10	60

		Government College of Engineering, Karad	
		Third Year (Sem –VI) B. Tech. Mechanical Engineering	
		ME2623 Elective – II Welding Technology	
Tooshina	Coh om o	Examination Scheme	
Teaching S Lectures	03 Hrs/week	CT - 1 15	
Tutorials		CT - 2 15	
Total Cred	its 03	TA 10	
		ESE 60	
		Duration of ESE 02 H	rs 30 Min
Course Ou	itcomes (CO)		
	of the course, the stu		
1.		metal profile by selection of different cutting methods	
2.	• •	ponent by different fabrication techniques	
3. 4.	Analyze welding d	defects which would happen during welding	
4. 5.		omponents manufactured by fabrication methods	
٥.	Detect defective co	omponents manufactured by fabrication methods	
		Course Contents	Hou
	<u> </u>		
Unit 1		d Classification of Welding Processes:	(08)
		ssification of Welding processes. Comparison with other joining processes,	
		advantages, practical applications. Welding Symbols. Basic & supplementar	У
		pes of weld Joints, Selection of Weld Joint, and edge preparation.	,
		rations: Different metal cutting methods used in fabrication, Advantages an	
		ghtening methods, bending on roll bending machine, press, press brake	
		preparation and cleaning methods, Precautions in preparatory operations for	r
TT 14 0		d aluminum, fabrication characteristics of metals and composites.	(0.5)
Unit 2		hinery: Welding machines, three roll bending presses, press brakes, shearing	- ` ′
		a arc cutting machine, Different types of hand grinders, loading, unloading	g
TI 14 0		terial handling equipment's	(10)
Unit 3	0	cesses and Equipment's:	(10)
		of processes, Carbon Arc Welding, Flux Shielded Metal Arc Welding,	
		Welding, Tungsten Inert Gas Welding, Metal Inert Gas Welding, Electro slag	_
	<u> </u>	Gas Welding, Plasma Arc Welding, Arc Welding equipment's, Electrode	S
	·	tion and coding of electrodes.	.1
		nciple of operation, types of flames, Gas welding Techniques, filler material an	a
		ing equipment's, advantages and applications	,
		ling:-Definition, Fundamentals, variables advantages and application, Spo	
	_	hrinkage, Heat Balance Methods, Equipment, Electrodes, Seam, Projection Bu	
	_	h), Percussion Welding – Definition, Principle of Operation, equipment, Meta	ll
	weided, advantag	ges and application.	
Unit 4	Weld Onality an	d Defects, failure of welds, inspection and testing of welds, I.S. code for	r (05)
JIII T	_	Id metals, destructive tests for welds, microstructure for weld joints, weldin	` ′
	defects and reme		
Unit 5	Inspection and Te		(06)
Omt J	_	ng of weld – Tensile, Bend, Impact, Nick Break, Hardness, Etch Tests, No	, ,
		ing of Welds – Visual, Leak, X- ray and Gamma ray Radiography, Magneti	
		on, Dye, Fluorescent Penetrant Tests, Ultrasonic Inspection & Eddy Currer	
	Testing.	on, 2,0, 11001000011 Tenedian Tests, oldusome inspection & Eddy Curren	
Unit 6		processes: EBW, LBW, diffusion bonding, ultrasonic welding, pulsed currer	it (08)
		es, and friction welding. Welding of ceramics, plastics and composites	(00)
		ation and Robotics: Introduction, Automation options, Robotic welding	ŗ.
		ation, Programmable control, Remote Control Slave and Automated Systems	27
		s: Introduction, welding fixtures, their characteristics, classification an	d
	_	erations, various types of welding fixtures.	-
	Server Conside		
Text Book	S		
		elding and Welding Technology." TMH	

2.	U. S. Steel Corporation, "Fabrication of Stainless Steel."								
3.	ASTME, "Fundamentals of Tool Engineering Design", PHI Publication								
4.	Schwartz M.M., "Metal Joining Manual", McGraw Hill, NY 1979.								
5.	O.P.Khanna, "Welding Technology" Dhanpat Rai Publications								
Referen	ce Books								
1.	Begman, "Manufacturing Processes								
2.	Schwartz M.M., "Metal Joining Manual", McGraw Hill, NY 1979								
3.	Cnnur L.P., "Welding Handbook Vol I & II", American Welding Society, 1989								
4.	Hauldcraft P.T, "Welding Process Technology", Cambridge University Press, 1985								
5.	V. Rybakav "Arc and Gas welding" (Mir Publication)								
Useful I	Links								
1.	www.sciencedirect.com/science/book/9780750666916								
2.	unesdoc.unesco.org/images/0016/001613/161340e								

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO	PO	PO	PSO	PSO	PSO
CO↓										10	11	12	1	2	3
CO 1	3	3	3								2	2	3	2	
CO 2	3	3	3	2	1				2		2	2	2	2	
CO 3	3	3	3	2	1				2		2	2	3	2	
CO 4	3	3	3	2	2				3		3	2	3	3	
CO5	3	3	3	2	2				3		3	2	2	3	

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	3	3	1	10
Understand	3	3	2	10
Apply	3	3	2	10
Analyse	2	2	2	10
Evaluate	2	2	2	10
Create	2	2	1	10
TOTAL	15	15	10	60

					of Engineering, Kara					
				•	ech. Mechanical Eng					
			WIE 263	os Elective – II : End	ergy and Power Engi	ineering				
	hing Sch	eme				Examination	Scheme			
ectur		CIIIC	03 Hrs/week			CT – 1	15			
utori						CT – 2	15			
otal (Credits		03			TA	10			
						ESE	60			
						Duration of ES	SE 02 Hrs 3	30 Mir		
	se Outc									
	_		rse, students wi							
1. 2.				energy sources renewable energy sources						
3.					nent to practical problem	ne				
4.				omics of power plant	ient to practical problem	115				
	10 till		a c variatio econ		rse Contents			Hou		
Un	nit 1	Sola	r Radiation an	d its Measurement				06		
		Sola	r Radiation- T	he Sun as the source	of Radiation, Earth	and Solar cons	stant basic,			
					adiations and its variati					
					of Solar radiation by the					
					narts, Measurements of	diffuse & glob	al & direct			
T I	nit 2			of sunshine hours				09		
Un	nit 2		r Energy Appl		cooling, pumping, pow	er production	dictillation	US		
				s, solar pond, solar fur		er production, (uisumanon,			
					nentals of Photovoltaic	conversion. PV	systems -			
					ower satellite energy,					
					ons, Maximum power p		·			
					tor, Transmissivity of o					
		_		•	ntrating collector, Com	nparison of Fla	t plate and			
T 7	** 3		ntrating collecte					0.4		
Un	nit 3		gy from Wind		D. (11 (4 1 4 X7		00		
				-	y, Data collection and si , Rotor design, Blade de					
					ream theory. (No nume		orauc,			
					iomass conversion Tec		otosynthesis,			
					ligestion of gas, Class					
		Select	ion of site for a	Biogas plant						
Un	nit 4			wer Plant Engineerin	-			00		
					C, NHPC and their role					
			•	•	ower distribution, Power	•				
			•	•	grids, Different types nd their characteristics					
			_		nts and their characteristics	•				
		_		various parameters, Is		stres. Compariso	on or power			
	nit 5	_	nomics of Powe		F ***			09		
Un					les of power plant desig	gn, Location of 1	power plant,			
Un		Layou	it of power plan	nt, Cost analysis, Selec	tion of type of generation	on, Selection of	power plant			
Un		equin	ment, Economi		Factors affecting eco		eration and			
Un			distribution of power, Useful life of power plant, Economics of Hydro-electric power plants, Economics of Combined Hydro and Steam power plants, Performance and operating							
Un		distrib								
Un		distrib Econo	omics of Com	bined Hydro and St	eam power plants, P	erformance and	d operating			
	ait 4	distrib Econo charac	omics of Cometeristics of pow	bined Hydro and St ver plants, Economic lo		erformance and	d operating	0.		
	nit 6	distrib Econo charac Ener	omics of Cometeristics of powersy Audit and	bined Hydro and St ver plants, Economic lo Management	eam power plants, P ad Sharing, Tariff for E	Performance and Electrical energy	d operating	04		
	nit 6	distrib Econo charac Ener Conce	omics of Competeristics of powersy Audit and Earth and purpose	bined Hydro and St ver plants, Economic lo Management e of energy audit, End	eam power plants, P and Sharing, Tariff for E ergy conservation acts,	Performance and Electrical energy Auditing proce	d operating edure, Basic	04		
	nit 6	distrib Econo charac Ener Conce	omics of Cometeristics of powers Audit and purpose onents of energy	bined Hydro and St ver plants, Economic lo Management e of energy audit, End	eam power plants, P ad Sharing, Tariff for E	Performance and Electrical energy Auditing proce	d operating edure, Basic	04		

1.	Solar Energy, S. P. Sukhatme and J. K. Nayak, Tata McGraw-Hill, 3 rd Edition 2008							
2.	Non-Conventional Energy Sources G. D. Rai Khanna Publisher, 4th Edition 2014							
3.	Solar Energy. H. P. Garg and J Prakash, Tata McGraw-Hill, 1st revised edition 2000							
4.	Power Plant Engineering, P. K. Nag, Mc Graw Hill Third Edition, 2010							
5.	Power Plant Engineering, R. K. Rajput, Laxmi Publications (P) LTD, 2008							
Reference Boo	oks							
1.	Solar Energy. H P Garg and J Prakash Tata McGraw-Hill, 1st revised edition 2000							
2.	Power Plant Technology, M.M.El Wakil, Tata Mc Graw Hill. Int, 2 nd Edition.Reprint, (2010).							
Useful Links								
1.	www.nrgsystems.com							
2.	www.ises.org							
3.	http://windeis.anl.gov/guide/basics							
4.	http://www.awea.org							
5.	https://www.nrel.gov							

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO	PO	PO	PSO	PSO	PSO
CO ↓										10	11	12	1	2	3
CO 1	2	2	2	1	-	-	-	-	-	-	-	2	2	2	2
CO 2	2	2	2	1	1		-	-	-	-	1	2	2	2	2
CO 3	3	3	3	1	1	1	-	1	1	1	1	2	2	2	2
CO 4	3	3	3	1	1	1	-	-	-	-	-	2	2	2	2

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	3	3	2	10
Understand	3	3	1	16
Apply	4	4	3	10
Analyse	3	3	2	12
Evaluate	2	2	2	12
Create	0	0	0	00
TOTAL	15	15	10	60

			G	overnment College	of Engineeri	ng, Kara	d				
				ear (Sem – VI) B. T							
				ME 2604 : Dyna	amics of Mac	hines					
Teach	ing Scl	neme					Examinatio	on Scheme			
Lectur	es		03 Hrs/week				CT – 1	15			
Tutoria	als						CT – 2	15			
Total (Credits		03				TA	10			
							ESE	60			
							Duration of	ESE 02 Hrs 3	0 Min		
Cours	e Outc	ome (C	O):					·			
At the	end of	this cou	rse, students w	ill be able to							
1.	Demo	nstrate t	the fundamenta	principles of dynamic	es to machinery	V					
2.	Apply	balanci	ng methods to	balance rotating and re	eciprocating cor	mponents					
3.	Analy	ze vibra	tions of single	degree of freedom sys	tems						
4.				nergy stored in flywhee		gyroscopio	couple on i	naval ship, aero	plane,		
	etc.					23	1	1,	. ,		
				Cou	rse Contents				Hour		
Un	it 1	Tootl	hed Gearing								
		Geom	etry of motion,	gear geometry, types of	of gear profile-	involute an	d cycloidal,	theory of spur,	7		
		helica	l and spiral gea	rs, interference in invo	olute tooth gears	s and meth	ods for its pr	evention.	'		
Un	it 2		Trains								
			Types of gear trains - simple, compound, reverted, epicyclic gear train, tabular method for								
			finding the speeds of elements in epicyclic gear train, torques in epicyclic gear train, differential								
		_	gear box, equivalent mass and moment of inertia applied to gear trains, recent trends in								
			natic transmissi	on.							
Un	it 3	Balancing Static and dynamic balancing of rotary and reciprocating masses, primary and secondary forces									
									8		
				nd reverse cranks, bala	incing of single	e cynnaer, i	nuiti cyiinae	er, in-line and			
Un	;+ <i>1</i>		engines for for	ir wheeler							
OII	11.4		Gyroscope Gyroscopic couple, spinning and precession motion, gyroscopic couple and its effect on i) Aero								
			ii) Ship iii) Foi		i illotion, gyrosc	copic coupi	e and its cire	ct on i) Acio	5		
Un	it 5		nanical Vibrat								
OII	It S			efinitions, types of vib	rations equival	lent springs	equation of	f motion types			
						1 0			8		
			of damping, SDOF free vibrations with and without damping, logarithmic decrement. SDOF forced vibrations with and without damping, magnification factor, frequency response curves,								
				d transmissibility	6,	,	1	,			
Un	it 6	Flyw		•							
		Turni	ng moment dia	grams, fluctuation of e	nergy, coefficie	ent of fluct	uation of spe	eed, rimmed	5		
		flywh	eel				•				
Text P	Books										
	1.			nes", Rattan S. S., Tat							
	2.			nes", Sadhu Singh, Pe							
	3.			nes", Jagdishlal, Metr			Edition				
·	4.			nes", Ballaney, Khanr							
	5.		heory of Mach	nes", V. P. Singh, Dha	anpat Rai Publi	cations, 3 rd	Edition				
Refere	ence Bo										
	1.			nes and Mechanisms"				on			
	2.			nes", Thomas Beven,							
	3.	"N	Mechanism and	Machine Theory", Ra	o, Dukkipati, N	New Age In	ternational,	2 nd Edition			
	4.			Dynamics of Machine							
·	5.		inematics, Dyr	amics and Design of N	Machinery", Wa	alidron, W	iley India Pu	iblication, $\overline{2^{\text{nd}}}$ Eq	dition		
<u>Useful</u>	Links										
	1.			ourses/112104114/							

2.	http://nptel.ac.in/courses/112104121/1
3.	

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO	PO	PO	PSO	PSO	PSO
CO↓										10	11	12	1	2	3
CO 1	2	1		1								2	2	1	2
CO 2	2	2	2	2								1	1	1	1
CO 3	2	2	2	2								3	2		1
CO 4	2	2	2	2	·	·						2	1	1	1

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	2	2	0	10
Understand	4	4	1	16
Apply	4	4	3	16
Analyse	3	3	3	10
Evaluate	2	2	2	08
Create	0	0	1	00
TOTAL	15	15	10	60

		rene. •	Government College of				
		Thir	Year (Sem –VI) B. Tech		eering		
			ME 2605 : Manufactu	iring Engineering			
 Feach	ing S	cheme			Examination Scho	eme	
Lectu		03 Hrs/week			CT – 1	15	
Tutori		1Hrs /Week			CT – 2	15	
	Credit				TA	10	
					ESE	60	
					Duration of ESE	03 Hr	S
		tcomes (CO)					
		•	ourse students will be able to				
1.			metal cutting action with dif	ferent cutting tool			
2.			or simple components				
3. 4.			ss tool die for different com		+0		
4.	Sele	ct the tooling for adva	nced manufacturing like CN	C, Kapiu prototyping e	ic.		
			Course (Contents			Hour
Uni	t 1		Fixtures (Special Tooling)		<i>α</i>		(9)
			ons, basic elements, Principl	V 1	ng, Clamping and		
			auxiliary elements like Tenor and Milling fixtures- desig		and fixtures with a	respect	
			ns, introduction to modular				
		(CAFD)	is, introduction to inodular	inatures una Computer	Thata Thatare Des	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Unit 2 Mechanics of Metal Cutting							(9)
Introduction to metal cutting, wedge action, concept of speed, feed and depth of cut, orthogon						onal	
			Parts, angles and types of sir				
			echanics of metal cutting-Ch				
			e, shear plane shear stress &				
		•	nation of cutting forces, Merc	-			
Uni	+ 3	Theory of Metal C	hinability of metals- factors	arrecting, improvement	and macinilability	muex	(7)
CIII	. 3		f wear, relationship with cutt	ing narameters. Taylor	's equation and		(1)
			es. Surface finish- Factors a				
			generation in machining, its			ee	
		finish, types and sel	ction criteria of cutting fluid	S.			
			l geometry of multipoint cut	ting tools- drills, millir	ng cutters, reamers.		
Uni	t 4	Press Tools					(7)
			ology, Elements of Dies and				
			gressive dies and punches o		g operations such as	•	
			drawing, bending, forming, d lie, Progressive die, Calcula	•	ure different forces	nrece	
			strip layout, methods of				
		elements (theoretica	¥ •	reading rarear zear	511 4011011011011011011011	.01 010	
Uni	t 5	Cost Estimation	• • • • • • • • • • • • • • • • • • • •				(6)
			of Cost Estimation and Cost				
		<u> </u>	Estimation, Types of costs,				
		' '	t, material, labour, expenses	•		ls,	
T I-a.			ne hour rate, steps in cost est	timate, breakeven point	t analysis.		(0)
Uni	ιο		ced Manufacturing	on Construction and w	vanleing of CNC and	ı	(8)
			& CNC Tooling: Introducting tomatic Tool Changer (ATC)		•		
		changer (APC).	nomane 1001 Changel (ATC	e) and Automatic 1001	better, Automatic p	anet	
			ing Using Rapid Prototypii	ng: Ranid prototyping a	concept advantages	,	
		_	Cooling- Direct Rapid Prototy			',	
			ing, Powder Metallurgy Too			ining,	
		Study of 3D printing				٠,	

Text Books Workshop technology Vol.- I, II and III by Chapman, Edward Arnold Publication Ltd. London Workshop Technology Vol.- I and II by Hajara Chaudhari, Media Prom and Publication, Mumbai. 2. Production Engineering by P.C. Sharma, S. Chand Publication, 11th Edition. 3. Machine Tool Engineering by G. R. Nagpal, Khanna Publication. 4. CAD/CAM Principles & Applications by P. N. Rao Mc Graw Hill Publication. Principles of Modern Manufacturing by Mikell P. Groover, Wiley Publication., 5th Edition. 5. Production technology by R. K. Jain, Khanna Publications. 6. 7. Jigs and Fixtures by P.H. Joshi Tata McGraw Hill. Users Guide to Rapid Prototyping, T. A. Grimm and Associates, Society of Manufacturing Engineers (SME) ISBN 0872636976 **Reference Books** 1. HMT Hand Book- Production Technology Manufacturing Processes by S. E. Rusinoff Times India Press. Manufacturing Processes and Materials for Engineers, by Doyle, Prentice Hall of India. 3. Fundamentals of Tool Design, by S. K. Basu, Oxford IBH Metal Cutting Theory and Tool design by Mr. Arshinnov, MIR Publication Fundamentals of Tool Design" ASTME, Prentice-Hall of India Private Ltd., New Delhi, Publication, **6.** 7. Tool Design by Donaldson, THM Publication, 3rd Edition. Theory of Metal Cutting by Sen and Bhattacharya, New Central Book Agency. 8. 9 Introduction to Jigs and Fixtures by Kempster, ELBS. Rapid Prototyping Theory and Practice, Manufacturing System Engineering Series, Ali K. **10.** Rapid Prototyping- case book, J. A. McDonalds, C. J. Ryall, Wiley Eastern 11. Rapid-Prototyping Technology by Kenneth Cooper, MARCEL DEKKER, INC. Publication. **12. 13.** Introduction to Jigs and Fixtures by Hoffman, Galgotia Publishers. **Useful Links NPTEL Lecture:** http://nptel.ac.in/courses/112105126/ https://youtu.be/KJj8CfnC0Ek

Mapping of COs and POs

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	3	3	2									2	3	2	
CO 2	3		2	2					2			2	3	3	
CO 3	3	3	2	2	2				2			2	3	3	
CO 4	3	3	2	2	2				3			2	3	3	3

Assessment Pattern (with revised Bloom's Taxonomy)

https://www.youtube.com/watch?v=S6P7fOwV04Q

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	2	2	0	08
Understand	4	4	1	16
Apply	4	4	3	12
Analyse	2	2	3	08
Evaluate	2	2	2	08

Government College of Engineering, Karad Third Year (Sem – VII) B. Tech. Mechanical Engineering

ME 2606: Control Engineering Lab

Teaching Schem	e	Examination Schem	ne
Practicals	02 Hrs/week	CT – 1 -	
Tutorials	-	CT – 2	
Total Credits	01	CA 25	5
		ESE 25	5
		Duration of ESE -	

Course Outcomes (CO)

At the end of this course, student will be able to:

- 1. Compare the properties/ characteristics of controllers with modes like P, I, D, PI, PD and PID.
- 2. Select controllers in design and analysis of Control Engineering applications.
- 3. Describe the input-output differential equation for control components used in Feedback Control Systems.
- **4.** Use MATLAB/SIMULINK/SciLab software to formulate the simple Control Engineering Problems.

Course Contents

Term work should consist of any 08 experiments from the following.

Experiment 1	Study of response characteristics of On-Off Controller for Fluid flow/ Thermal system.
Experiment 2	Study of various Control Modes like P, I, D, PD, PI, PID for Pressure / Thermal / Flow level
	system.
Experiment 3	Study of PID control of single DOF of spring-mass-damper system.
Experiment 4	MATLAB Programming for Generation of transfer function and block diagram reduction.
Experiment 5	Using MATLAB, Transient response and system performance of linear system to different inputs.
Experiment 6	MATLAB Programming for Pole-zero pattern and system stability
Experiment 7	MATLAB Programming for State space method and Frequency Response method.
Experiment 8	Modeling of any physical system using Simulation software MATLAB/SIMULINK.
Experiment 9	Industrial visit and report writing to study Automatic control system applications.
Experiment 10	Group Activity-

Maximum 3 to 4 students in one group.

Detailed survey of collection literature/case studies related to any one of the Control system application based on Mechanical system, Electrical/Electronic system, Vibration system, Fluid flow system, Thermal system etc. Survey/case studies includes following points-

- 1. Introduction/Relevance
- 2. Objectives
- 3. Physical layout
- 4. Block diagram representation
- 5. Selection of Controller and feedback element
- 6. Theory/Description and specifications of System Components
- 7. Principle of working operation
- 8. Design calculations/theoretical analysis
- 9. Concluding remarks/comments

Text Books

- 1. "Control Systems Engineering using MATLAB", S. N. Sivanandam, S. N. Deepa, Vikas Publishing House Pvt. Ltd., 2nd Edition.
- 2. "MATLAB and Simulink-Introduction to Applications", Parth S. Mallick, Scitech Publications (I) Pvt. Ltd, 2nd Edition.
- 3. "Analysis and Design of Control Systems using MATLAB", Rao V. Dukkipati, New Age International Publishers, 1st Edition
- **4.** "Control Systems Engineering using MATLAB", S. N. Sivanandam, S. N. Deepa, Vikas Publishing House Pvt. Ltd., 2nd Edition.

Reference Books

- 1. "Getting Started with MATLAB", Rudrapratap, Version 6, Oxford University Press, 2nd Edition.
- 2. "Introduction to MATLAB 6", D. M. Ether, D. C. Kuncicky, D. Hull. Pearson Education, 1st Edition.
- 3. "Getting Started with Control System Toolbox", Version 5, The Math Works.

Useful	Links
1.	http://www.controlandinstrumentation.com/
2.	https://instrumentationandcontrol.net/
3.	https://www.halvorsen.blog/documents/teaching/courses/labview_automation/labview_control.php

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
CO↓													1	2	3
CO 1	3	2	2	1	2	-	-	-	1	-	1	2	3	2	3
CO 2	3	2	2	1	2	1	-	-	1	-	1	2	2	2	3
CO 3	3	2	1	-	2	-	-	-	-	-	-	2	2	2	3
CO 4	2	2	2	1	3	-	-	-	1	-	-	2	2	2	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	4	6
Understand	-	-	4	8
Apply	-	-	5	6
Analyse	-	-	6	3
Evaluate	-	-	6	2
Create	-	-	0	0
TOTAL	-	-	25	25

	G	overnment College of Er	ngineering, Karad			
		ar (Sem – VI) B. Tech.				
		07 Internal Combustion				
			8			
Teaching Scheme				Examination	Scheme	
Lectures	02 Hrs/week			CT – 1	-	
				CT – 2	-	
Total Credits	01			CA	25	
Lab Outcomes (LO						
		d various types of internal c	ombustion engines			
	arious engine sys					
		I. engine and C. I. engines				
		is engine performance chara	ecteristics and its test	ing		1
List of Experiment						Hours
Term work should	consist of any 1	experiments from the fol	lowing			
	T					
Experiment 1		n of constructional detail of				
Experiment 2		n of engine systems: Air int		g, lubrication s	systems	
Experiment 3		n of ignition systems, startin				
Experiment 4		of carburettor and petrol i	njection system			
Experiment 5	Demonstration					
Experiment 6		n of fuel injection system of	diesel engine			
Experiment 7	Demonstration					
Experiment 8	•	n diesel engine to determine	e variable load perto	rmance and h	eat balance	
E 4 0	sheet				4 1 1	
Experiment 9	sheet	n petrol engine to determine	variable load perfor	mance and ne	eat balance	
Experiment 10		d test on two stroke petrol e	ngina			
Experiment 10 Experiment 11		multi cylinder petrol engine		ted Power of	each	
Experiment 11	cylinder	man cymiaer penor engine	to determine matea	ica i owei oi	Cucii	
Experiment 12		uter controlled I. C. Engine	to plot pressure vers	us crank anolo	e (P-θ)	
Zaperment 12	diagram	stor controlled i. c. Eligino	to prot probbate vers	as oranic angle	(1 0)	
Experiment 13		of exhaust emissions of S.	. engine/ C. I. engine	e		
Experiment 14		le compression ratio engine			gine	
Experiment 15		nmercial engines, their spec	<u> </u>			

$PO \rightarrow$	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
LO↓													1	2	3
LO 1	2								2				1		
LO 2	2	2	2						1	1		1		1	
LO3	2	2	2						1	1		1		1	
LO 4	2	2		1					2	1		1		1	

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	4	6
Understand	-	-	4	8
Apply	-	-	5	6
Analyse	-	-	6	3
Evaluate	-	-	6	2
Create	-	-	0	0
TOTAL	-	-	25	25

		overnment College of			
	Third Ye	ear (Sem – VI) B. Teo	ch. Mechanical En	gineering	
		2 2608: Dynamics of			
		·		·	
Teaching Scheme	,			Examinatio	n Scheme
Practicals	02 Hrs/week			CT – 1	-
Tutorials	-			CT – 2	_
Total Credits	01			CA	25
					-
Lab Outcomes (I	(O)				
	course, student will	be able to:			
		l behavior of system			
		otating and reciprocating	g machine elements		
		ertia of various mechani			
4. To apply the	ne principles of gyr	oscope	-		
	List of Exp				
Term work shoul	d consist of any 10	experiments from the	e following.		
Expaniment 1	Determination of	M. I. waina hifilan awan	ancian avatam		
Experiment 1	Determination of	M. I. using bifilar susp	ension system		
Experiment 2	Determination of	M.I. using trifilar suspe	encion system		
Experiment 2 Experiment 3	Demonstration at	nd study of the gear box	of any four wheelers	with respect to t	types of gear velocity
Experiment 3	ratio, type of trai	n, arrangement of gears	of any four wheelers	with respect to	types of gear, velocity
Experiment 4		orque measurement in eq			
Experiment 5		alancing of rotary masse		c)	
Experiment 6		ng of reciprocating mass			e drawing sheets)
Experiment 7		eel for IC engine and pu		•	<u> </u>
Experiment 8		yroscopic principle and		oscopic couple	
Experiment 9		n measuring instrument		1 1	
Experiment 10		critical speeds of shaft			
Experiment 11		fness of the given helic	al spring period and	frequency of und	amped free vibration
Emperation 11	of spring mass sy		ar spring, period and	irequency or and	amped free violation
Experiment 12		correlate practical appl	ications of the gearbo	ox, balancing of r	nachine and vibration
•	-1	•	<u> </u>		
Lab Outcomes:					
At the end of cour	se students will be	able to			
		in for typical power trai		[
		iple and effect of gyros			
		ng of rotary and recipro			
	the vibration paran	neters of different system	ns		
Text Books					
		n S. S., Tata McGraw I			
		u Singh, Pearson Educa			
		ishlal, Metropolitan Pub			
		ney, Khanna Publicatio			
5. "Theory	of Machines", V. P.	Singh, Dhanpat Rai Pu	blications, 3 rd Edition	1	
Reference Books					
_		echanisms", Shigley, Ta		Edition	
		nas Beven, Pearson Edu			
3. "Mechan	ism and Machine T	Theory", Rao, Dukkipati	, New Age Internation	onal, 2 nd Edition	
4. "Mechan	isms and Dynamics	of Machines", J. Sriniv	as, SciTech Publicati	on, 2 nd Edition	
		Design of Machinery",			d Edition
5. "Kinemat	ics, Dynamics and	Design of Machinery,	wandion, whey mu	ia i ublication, 2	Eulifoli

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO	PO	PO	PSO	PSO	PSO
LO↓										10	11	12	1	2	3
LO 1	2	1			2				1	1		2	2		1
LO 2	2	2	1	1					2	1		2	1	1	1
LO 3	2	2							1	1		1	2	1	1
LO 4	2	2	1						1	1		2	1		1

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	4	6
Understand	-	-	4	8
Apply	-	-	5	6
Analyse	-	-	6	3
Evaluate	-	-	6	2
Create	-	-	0	0
TOTAL	-	-	25	25

			overnment College o										
		Third Ye	ear (Sem – VI) B. Te		al Engineeri	ng							
			ME 2609	CIM Lab									
Teachi	ing Scheme				Eve	mination S	Scheme						
Practic		02 Hrs/week			CT								
Tutoria		UZ HIS/Week			CT								
Total C		01			CA	<u> </u>	50						
1 Otal C	Sicarts		job assessment will be	e done for 25 ma		rkshop supe							
			ted to CIM course coor			F F -							
Lab O	utcomes (L	0)											
		ourse, student will											
1.			oncept of manufacturing	~	•	mation							
2.			nd robot program for si		t.								
3.			e various machining op										
4.	To implem	ent principles of m	etrology to various con	nponents									
			List of Ex	noriments									
Torm	work shoul	d consist of any 16	experiments from the										
		<u>-</u>		te following.									
	eriment 1		lace programming.										
	eriment 2		onstruction of CNC lat			d M codes.							
	eriment 3		simple components or										
	eriment 4		on of CNC lathe opera			137 1							
	eriment 5		onstruction of CNC mi			and M code	S.						
	eriment 6		simple components or			~							
	eriment 7		on of CNC milling ope	rations for simp	ie components	S							
	eriment 8	Programming of											
	eriment 9	Demonstration o											
Expe	riment 10	Workshop Pra				1 4 . 6	- C (1 C-11						
		operations	the components as p	ber the drawing	requiring at	least four	of the following						
		i. Mill	nσ										
		ii. Shar	•										
		iii. Grin	_										
		iv. Tapı	•										
			hreading										
		vi. Slot	_										
		ion, Production sy	stems and Computer	Integrated Man	nufacturing" l	oy M. P. C	Groover (PHI), 3						
1.	Edition	11111			1		G IIII IGD						
	"Compute		uring", by P. N. Rao,	N.K. Tewari an	d T. K. Kund	ra, Tata Mo	Graw Hill, ISBN						
2.	05000546	31034. 3 ¹⁰ Edition	15 : 116 0										
2.	97800746		"CAD/CAM Computer Aided Design and Manufacturing", M. Groover, E. Zimmers, Pearson Publications,										
	"CAD/CA	M Computer Aid		ISBN 9788177584165, 5 th Edition									
2.	"CAD/CA ISBN 978	AM Computer Aid 8177584165, 5 th E	dition	Diam d B t	1 . (D) I :	1 Oth T 11.							
2. 3. 4.	"CAD/CA ISBN 978 "Worksho	AM Computer Aid 8177584165, 5 th E op Technology Vol	dition . II" – by Raghuvanshi										
2.	"CAD/CA ISBN 978 "Worksho	AM Computer Aid 8177584165, 5 th E op Technology Vol	dition										
2. 3. 4.	"CAD/CA ISBN 978 "Worksho	AM Computer Aid 8177584165, 5 th E op Technology Vol	dition . II" – by Raghuvanshi										
2. 3. 4. 5.	"CAD/CA ISBN 978 "Worksho "Worksho Edition	AM Computer Aid 8177584165, 5 th E op Technology Vol	dition . II" – by Raghuvanshi										
2. 3. 4. 5.	"CAD/CA ISBN 978 "Worksho "Worksho Edition	M Computer Aid 8177584165, 5 th E op Technology Vol op Technology Vo	dition . II" – by Raghuvanshi l. II "– by Hajara Ch	noudhary, Media	a Promoters a	and Publish	ers, Mumbai, 10						
2. 3. 4. 5. Refere 1.	"CAD/CA ISBN 978 "Worksho "Worksho Edition Ence Books "Principle	M Computer Aid 8177584165, 5 th E op Technology Vol op Technology Vol es of Computer Inte	dition . II" – by Raghuvanshi l. II "– by Hajara Ch grated Manufacturing	oudhary, Media	a Promoters a	and Publish 2 nd Edition	ers, Mumbai, 10						
2. 3. 4. 5. Refere 1. 2.	"CAD/CA ISBN 978 "Worksho "Worksho Edition "Ence Books "Principle "Introduc	M Computer Aid 8177584165, 5 th E pp Technology Vol pp Technology Vol es of Computer Inte	dition II" – by Raghuvanshi I. II "– by Hajara Ch grated Manufacturing' CIM system",James A	', by S. Kant Va	a Promoters a njpayee (PHI), a Education, 3	and Publish 2 nd Edition	ers, Mumbai, 10						
2. 3. 4. 5. Refere 1.	"CAD/CAISBN 978 "Worksho "Worksho Edition "Principle "Introduc" "Worksho	AM Computer Aid 8177584165, 5 th E op Technology Vol op Technology Vol es of Computer Inte- tion to Robotics in op practice manual	dition . II" – by Raghuvanshi l. II "– by Hajara Ch grated Manufacturing	', by S. Kant Va A. Rehg, Pearson B. Publication	a Promoters a ajpayee (PHI), Education, 3 th as, 6 th edition	2 nd Edition.	ers, Mumbai, 10						

Useful Links

http://nptel.ac.in/courses/112102103/17
http://nptel.ac.in/courses/112107077/module5/lecture2/lecture2.pdf

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO	PSO
LO ↓													1	2	3
LO 1	3	2	2	1	2	1	ı	-	1	-	1	2	3	2	3
LO 2	3	2	2	1	2	1	-	-	1	-	1	2	2	2	3
LO 3	3	2	1	-	2	-	-	-	-	-	-	2	2	2	3
LO 4	2	2	2	1	3	-	-	-	1	-	-	2	2	2	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	4	-
Understand	-	-	4	-
Apply	ı	-	5	ı
Analyse	ı	-	6	ı
Evaluate	ı	-	6	ı
Create	-	-	0	-
TOTAL	-	-	25	-

		G	overnment Colle	ege of Engineer	ing, Kar	ad		
		Third Yo	ear (Sem – VI) B	B. Tech. Mechai	nical Eng	gineering		
			ME 26	10 CAD Lab-I				
Teaching S	cheme					Examinatio	n Scheme	
Practicals		02 Hrs/week				CT – 1	-	
Tutorials		-				CT – 2	-	
Total Credi	ts	01				TA	25	
						T	ı	
Lab Outco	mes (LO)						
			ions on the created		reframe, s	urface and sol	id models.	
			g parametric mode					
			e primitives using p					
4. Crea	ate the di	fferent solid prin	nitives using the dif	fferent representa	tion scher	nes.		
7.1	• .							
List of Exp					G 1'	D Cl .:	D : : : : : : : : : : : : : : : : : : :	
1.		/MATLAB Hom nd 3D;	ogeneous represer	itation; Translatio	on, Scalin	g, Reflection,	, Rotation, She	earing in
2.			tion of lines, circle	e, Ellipse, parabol	a and hyp	erbola.		
3.			g in C++/MATLA				urves	
4.	_	metric representa	<u> </u>	<u> </u>				
5.			/MATLAB for Sol	lid primitives				
6.		•	tric models will ha	•	to be mod	ified as per the	e user's require	ements.
7.			on geometric mode				1	
7.		FJ	2 8		<u></u>	-		
Text Books	 }							
1.		Rogers and J. A	. Adams, Mathema	atical Elements in	Compute	r Graphics, M	cGraw-Hill.19	90
2.			auline Baker and					
		cation,2001				1	. ,	
3.	Grig	ore Burdea, Phili	ppe Coiffet, Virtua	al Reality Technol	logy, John	Wiley and so	ns,2003	
4.	Ibrah	nim Zeid, CAD/	CAM Theory and F	Practice, McGraw	Hill,2007			
Reference	Books							
1.			Michael E. Morter					
2.	Intro	duction to Solid	Modeling, Martii N	Mantyla				
					-	T		T
Useful Lin								
1.		//catiatutor.com						
2.	http:/	//nptel.ac.in/cour	ses/106106090/					

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO	PO	PO	PSO	PSO	PSO
CO↓										10	11	12	1	2	3
CO 1	2								2				1		
CO 2	2	2	2						1	1		1		1	
CO 3	2	2	2						1	1		1		1	
CO 4	2	2		1					2	1		1		1	

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	-	-	4	-
Understand	1	-	4	-
Apply	ı	-	5	ı
Analyse	ı	-	6	ı
Evaluate	ı	-	6	ı
Create	ı	-	0	ı
TOTAL	ı	-	25	1

				G 11	6.17	• 17				
			Government (Third Year (Sem –V					•		
			TE2611: Industrial					,		
		1	122011: Muustriai	Training	s and rec	iiiicai i i c	csciitatio.	<u> </u>		
Te	achin	g Scheme						Examinat	tion Sche	eme
	ctures							CA	50	
	torials									
To	tal Cro	edits 01								
Co	urse (Outcomes (CO)								
1.	To n	nake the students a	vare or familiar with th	ne industri	ial work					
2.		•	edge gained in the cour							
3.	Crea	ate, select, learn and	apply appropriate tech	_		nd modern	engineerir	ng tools.		T T T
		Execution scheme		Course (Contents					Hours
		Industrial training	of minimum two (2) w							
			and it's assessment wi						t	
		Industrial Trainin	ad of the assessment ca	an oe assig	gued to the	project ser	ımar guid	ie.		
		industriai Trainini	•							
			to undergo an industri							
			nanical Engineering du days before the start of							
			and present the conte							
		by the	departmen	ıt.	An	in	nternal	ev	aluation	
			for examining the qua							
			of the semester. It is ex							
			y of the course related and layout planning,							
			tion and improvement		_	_	•		•	
			ery modification as ide				,		,	
			GUIDELINES							
			al students are informe	ed that the	ey should f	ollow the gi	uidelines f	for industria	al	
		training period.								
		a) Minor Activity	: General study about i	industry (I	Day 1to5)					
		i	Type of industry.	•						
		ii	Organisation structur	re, departı	ments etc.					
			Detailed information		oducts/pro	cesses.				
			Machinery/ Equipme Plant Layout.	ent List.						
) Study financial report	rts of the a	company (Turnover)				
			training the students s				the end o	of first 5 d	ays and	
			opic of the case study							
		b) Moion A ativity	Tonias for some strat-	should be	hogad as	one of the f	'allawi	(Day 6 to 1)	5)	
			Topics for case study Product Design and A			one of the for ial Handlin	-	(Day o tol:	J)	
			Process Improvement			trial Engine				
			Rejection Analysis			outer Applic				
			Productivity Improven	nent		ial Selection		_		
			Value Engineering			ement Princ				
			uld undergo the tra		small, m	nedium or	large-sca	le industri	ies like	
		manuracturing, pi	ocessing, service sector	i eic.						
		c) Training Repor	:							
			ng report should be typ	ped in Tin	nes New R	Roman, font	size 12 fc	or regular te	ext, font	
			adings and font size 1							

should be only two chapters namely,

- 1. Introduction
- 2. Case Study

The report should include front page, certificate by the industry, certificate by the guide, acknowledgement, contents, two chapters, conclusion and references.

d) Instructions:

- Training period should be minimum 15 days.
- During their training period the students should keep in touch with their guide.
- Each student should work on different case study.
- As far as possible the students should undergo training in different industries.
- Fill the daily report regularly by keeping "Project diary" and submit it after completion of training to the guide.

GUIDELINES FOR PRESENTATION

Follow these rules for presentation

- 1. Remember that you are the presenter, not PowerPoint. Use your slides to emphasize a point, keep yourself on track, and illustrate a point with a graphic or photo. Don't read the slides.
- 2. Don't make your audience read the slides either. Keep text to a minimum (6-8 lines per slide, no more than 30 words per slide). The bullet points should be headlines, not news articles. Write in sentence fragments using key words, and keep your font size 24 or bigger.
- 3. Make sure your presentation is easy on the eyes. Stay away from weird colors and busy backgrounds. Use easy-to-read fonts such as Arial and Times New Roman for the bulk of your text, and, if you have to use a funky font, use it sparingly.
- 4. Never include anything that makes you announce, "I don't know if everyone can read this, but...." Make sure they can read it before you begin. Print out all your slides on standard paper, and drop them to the floor. The slides are probably readable if you can read them while you're standing.
- 5. Leave out the sound effects and background music, unless it's related to the content being presented. If you haven't made arrangements with the conference coordinator before your presentation, your audience members might not be able to hear your sound effects anyway. The same goes for animated graphics and imbedded movie files. Your sounds and animated graphics will not be functional on the synchronized version of your webcast.
- 6. Sure you can make the words boomerang onto the slide, but you don't have to. Stick with simple animations if you use them at all. Remember that some of your audience may have learning disabilities such as dyslexia, and swirling words can be a tough challenge. These animations will not be functional in the webcast version.
- 7. Proofread, proofread, and proofread. You'd hate to discover that you misspelled your company's name during your presentation in front of 40 colleagues, with your boss in the front row.
- 8. Practice, practice, practice. The more times you go through the presentation, the less you'll have to rely on the slides for cues and the smoother your presentation will be. PowerPoint software allows you to make notes on each slide, and you can print out the notes versions if you need help with pronunciations or remembering what comes next.

Follow following rules to prepare power point presentation

- 1. Keep the Text to a Minimum
- 2. Use Large Font Sizes
- 3. Make Sure Fonts Are Readable
- 4. Use Colour Sparingly
- 5. Enhance the Data With Charts and Graphs
- 6. Design for Wide Screen Formats
- 7. Be Consistent With Style Settings
- 8. Use Animations Sparingly
- 9. Proofread Everything
- 10. Consider Using a Template

Tutorials:- (Any Six Tutorials in the form of presentation by each student) 1. Prepare presentation on SWOT analysis of your self 2. Prepare presentation on Simulation done / Excel sheet calculations 3. Prepare presentation on College / Club / Competition Event organising plan 4. Prepare presentation on Prepare presentation on experiment carried on Lab Setup 5. Prepare presentation on New Product Design process 6. Prepare presentation on New Product Launching process 7. Prepare presentation on your Future Career Planning 8. Prepare presentation on Industrial Visit 9. Prepare presentation on Any one research paper 10. Prepare presentation on Industrial Training Course Objectives: - 1. To make the students aware or familiar with the industrial work and technical presentation Upon successful completion of this course, the student should be able to answer following questions 1. Which subjects you found useful for this training? 2. Have you seen any chart, tables, and graphs in industry? What was its meaning for you? 3. Can you design any system or part of it from this training? If not what knowledge you feel inadequate? 4. Was this training involved knowledge of electrical, electronics, civil, chemical or any process engineering 5. Have you come across any technical difficulty in training? If yes write in short, How you solved? 6. What was timing for training? Have you followed it? Were people in industry sincere in their work? 7. Which language used for communication in industry you visited? Have you talked there? 8. What pollution measures were taken by the industry for their waste disposal? 9. What is most important part of training you remember? 10. What is current issue in technical field you find most challenging? 11. Do you think this training is useful? What is its use? 12. Is there any scope for research you find while undergoing this training? **Reference Books** Design Data Handbook for Mechanical Engineers in SI and Metric Units by K. Reddy, K. Balaveera, Mahadevan, **CBS** Publishers **Useful Links Videos** https://www.youtube.com/watch?v=V8eLdbKXGzk 2. https://www.youtube.com/watch?v=d4y1OO9rppA https://www.youtube.com/watch?v=AXYxManvI8E

Mapping of COs and POs

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO	PO	PO	PSO	PSO	PSO
LO↓										10	11	12	1	2	3
LO 1	2	3	3	3	3	2	2	3	3	3	3	2	3	3	3
LO 2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
LO3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	ı	-	4	-
Understand	-	-	4	-
Apply	ı	-	5	-
Analyse	ı	-	6	-
Evaluate	ı	-	6	-
Create	ı	-	0	-
TOTAL	-	-	25	-

			Government Col	lege of Enginee	ring Kars	od			
		Thir	rd Year (Sem – VI)						
			· · · · · · · · · · · · · · · · · · ·	Industrial Psych	_	meering			
Teachin	g Schei	me	1,122-012-012	industrial L by Cl	101053	Examination Sch	eme		
						15			
Tutorial	Tutorials - CT - 2 1					15			
Total Credits		03				TA	10		
	ESE 60								
Duration of ESE 02 Hrs									
		nes (CO)							
		ll be able to							
	•		f difference contribute	to disparate educa	ational oppo	ortunities and work e	environm	ents.	
		conflict analysis							
			class teams and team						
4. Con	nmunica	ite effectively of	n business topics and c					House	
Unit 1	Doopl	a in Onganisati		ourse Contents				Hours	
Omt 1	_	e in Organisati	on Nature and Meaning	x of Industrial	Develology	Legues and Che	allangae	(4)	
			Role of Industrial, F						
		•	estrictive Mental Mode		inzationai i	ittitude, Tereoption	, Huon		
Unit 2			d Inclusion (DEI)					(7)	
			ersity, Why Bias Matte	ers, How Bias Mar	nifests in Str	ructural Inequalities,	,		
			ructural Inequalities, A			-			
	Conve	ersations about I	Diversity and Bias, Ch.	allenge of Diversi	ty, Diversity	y Management			
Unit 3	Motiv	ating People						(8)	
			ting- Elements, Theori						
			lderfer's- E-R-G Mo	•					
			c Incentive Systems						
		_	Incentives, Profit Sha	_	_				
Unit 4			gning & Leading Inclusin: Good or Bad?	ve Teams, Leading	g DEI Chang	ge in Your Organizati	on.	(7)	
Unit 4			n: Good or Bad: onditions for Conflict:	to Arice • Positive	Side of Co	nflict • Power vs Inf	luence	(7)	
		•	t Approaches/Dealing						
			nosing Conflicts, Inc						
			s, Steps $5 - 6$: Ro						
			lls, Conflict Managem						
	the Be	est Options, Rea	ching Agreement and	Getting Closure, I	Establishing	Accountability			
Unit 5		s and Teamwo						(7)	
	Defining Teams and Teamwork, Understanding the Types of Teams, Team-Based Problem Solving,								
	Team Composition, Personality & Behavior, Models of Teamwork: Team Assessment Method								
	Team Intervention Methods & Techniques. Team Leadership Styles and Techniques, Te								
	Membership & Selection, the Role of Team Values, Identity, Affinity, and Interdependence in Team Performance.								
Unit 6	1		Global Leadershin					(7)	
Omt U		ross Cultural and Global Leadership ommunication and Culture, The Deep Structure of Culture, Shaping Interpretations of Reality:							
Cultural Values, Culture and The Individual: Cultural Identity, Language and Culture: The Esser									
	Partnership, Nonverbal Communication: The Messages of Action, Space, Time and Silence, Cultural								
	Influences on Context: The Business Setting, Venturing into a New Culture: Becoming Competent								
					1	T			
Text Bo				<u> </u>		<u> </u>			
	_		ndelwal, ORGB: An	* *	oach to lea	rning and teaching	g Organi	zational	
			Perspective, Cengage		. /D1 1 11	TT			
2. The Blackwell Handbook of Principles of Organizational Behavior (Blackwell Handbooks in Management)									
 by Edwin A. Locke, Wiley; 2nd edition, 2009 Organization Theory, Modern, Symbolic, and Postmodern Perspectives, by Mary Jo Hatch, Oxford University 									
3. Or <i>Pres</i>	_	ion i neory, Mi	ouern, Symbolic, and	rosunoaern Per	spectives, t	y wary jo Hatch,	Oxford Un	liversity	
	,	tion, 2018							
Referen									
			onal Behavior, McGrav	v Hill 2008	I	<u> </u>		1	
			ng Organizational Beh		versity Pres	SS			
- I			<u> </u>	•				-	

3.	3. Robbins, Stephen, Organizational Behavior, Prentice Hall, India							
Use	Useful Links							
1.	Organisational behaviour: Know your people Coursera							
2.	Leading Diverse Teams & Organizations Coursera							
3.								

PO →	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 6	PO 8	PO 9	PO	PO	PO	PSO	PSO	PSO
CO↓										10	11	12	1	2	3
CO 1			1					2	2	2	3	1	2		3
CO 2								2	3	2		2	1	-	-
CO 3								2	3	2	2		-	2	1
CO 4								2	2	3	2	1	2	1	

Knowledge Level	CT 1	CT 2	TA	ESE
Remember	5	4	2	05
Understand	5	4	2	15
Apply	5	3	2	10
Analyse	-	3	2	15
Evaluate	-	1	2	15
Create	-	-	0	00
TOTAL	15	15	10	60